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Abstract

A variational method for linear coupled quasi-static thermoelastic analysis is presented. The variational support is a
statement in terms of displacement, temperature, stress and heat flux. The statement is based on the hybrid stress
formulation for the elastic part and on the mixed flux—temperature formulation for the thermal one, and includes the
rate dependent terms of the energy balance equations and the initial condition. A finite element model for the semi-
discrete analysis is developed within this variational framework, and a guideline for implementing a family of ther-
moelastic finite elements is given. Some test cases enlighten the effectiveness and reliability of the approach
proposed. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Thermal stresses play a specific role in solid mechanics (Boley and Weiner, 1960; Nowacki, 1986). In the
case of traditional materials, thermal effects on a body are limited to strains due to the temperature gra-
dient, which is autonomously determined and constitutes a datum for stress analysis. In the case of so-
phisticated materials (e.g. high performance composites), thermal effects can include heat production due to
strain rate, i.e. the thermoelastic dissipation. In this case, thermal and stress analyses are coupled. An
analytical treatment of such problems is hardly ever possible for reasons of mathematical complexity, so
that the development of alternative methods of analysis is essential. On this purpose, a variational for-
mulation of the coupled thermoelastic problem can be of interest, both as a theoretical contribution and as
a sound support for a suitable method of analysis.

With regard to the first aspect, Biot (1956) first gave a variational principle for the coupled problem of
thermoelasticity, in terms of displacement and entropy flow. Further, contributions of Herrmann (1963)
and Ben-Amoz (1965) generalize Biot’s principle. Principles a la Gurtin were given by Iesan (1966), Nickell
and Sackman (1968), Rafalski (1968) — see also the survey paper of Carlson (1972). By introducing the heat
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displacement (a vector function whose divergence is, by definition, the temperature) as a variable, Ke-
ramidas and Ting (1976) presented a variational principle in displacements and in this new variable, and
derived a finite element model. From a different side, Askar Atlay and Cengiz Dokmeci (1996) have
provided for a comprehensive framework of variational principles in the standard kinematic, dynamic and
thermal variables.

The variational approach chiefly followed in the applications seems to be the compatible one, i.e. in
displacement and temperature (e.g. Carter and Booker, 1989; Tamma and Namburu, 1991; Tay, 1992; Rao
and Sinha, 1997), certainly for its simplicity and versatility. The possibility of combining the assumed strain
mixed approach (Atluri et al., 1983) with the customary temperature approach (Hogge and Fraeijs de
Veubeke, 1972) is presented by Zhu and Cescotto (1995), with emphasis on the finite element implemen-
tation for stress analysis and only a marginal consideration for thermoelastic coupling. More recently, the
authors have presented a mixed finite element model for thermoelastic analysis (Cannarozzi and Ubertini,
1998), which anticipates some issues exposed in the sequel.

This paper moves from the authors’ opinion that a procedure of analysis which involves directly both
primal variables — displacement and temperature in this case — and dual variables — stress and heat flux —
can be more convenient, not only for obtaining a better accuracy in the results, but also for the possibility
of controlling independently all the quantities involved in a process. On this premise, the paper presents an
integrated, mixed method for treating linear coupled thermoelastic problems in the quasi-static case — the
inertia terms are disregarded. Indeed, this case can be meaningful for real materials (Atarashi and Min-
agawa, 1992), and especially for non-traditional ones. The method is essentially based on the Hellinger—
Reissner principle in the hybrid version (Atluri et al., 1983) — modified minimum complementary energy
principle — for the elastic part, and on the analogous principle in heat conduction (Fraeijs de Veubeke and
Hogge, 1972) for the thermal one. So, the field variables of the variational problem, on the whole, are stress,
heat flux and temperature, and the boundary variables are displacement and temperature. The variational
statement which supports the method encompasses: the functionals of the above principles, a functional
which takes into account the thermoelastic dissipation and the energy related to the temperature rate, and a
functional accounting for the initial temperature condition. Stresses are assumed in equilibrium with the
field load, according to the hybrid stress model. As is well known, one of the advantages of this approach is
to be free of locking. The thermoelastic dissipation is expressed in terms of stress rate via constitutive law to
eliminate strain rate as a field variable. For the rate dependent terms, the energy balance is enforced weakly
by employing the temperature as a Lagrange multiplier, whereas thermal equilibrium for field heat sources
is fulfilled in advance, so that the approach on the thermal side is of mixed type, and becomes formally of
hybrid type for the steady state problem. This last approach has been experienced with satisfactory results
and proposed by the authors (Cannarozzi et al., 1999, 2000) in heat conduction analysis. In the finite el-
ement discretization, temperature within the element and temperature at the interelement are represented
independently of each other. This aims at improving the thermal response of the model without affecting
the consistency between stress and temperature representations (de Miranda and Ubertini, 1999). Stress
and heat flux parameters are eliminated at the element level. Thus, at the assembly level, the statement
yields, besides the initial conditions, the discretized energy balance equations and the interelement equi-
librium equations for stresses and heat flux and involves the inner temperature and the interelemental
displacement and temperature. The integration in the time domain can be implemented following a method
with variational support (e.g. Ubertini, 1998; Mancuso et al., 1998), as well as a finite difference based
procedure (e.g. Hughes, 1987).

Entering into the details of the exposition, Section 2 accounts for the equations of the initial-boundary
value problem. The corresponding variational formulation is given in Section 3, and the relevant mixed
model is exposed in Section 4. A finite element implementation is developed and discussed with regard to
stability, consistency and invariance in Section 5. Some numerical tests, exposed in Section 6, account for
the superior convergence and accuracy properties of the proposed finite element scheme in comparison with
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the compatible model, with particular regard to mesh distortion sensitivity. This shows that the higher
computational expense is widely offset by the quality in the results. Some concluding remarks end the

paper.

2. The initial-boundary value problem

Consider a body which at the time ¢ = 0 occupies the closed and bounded domain B of the euclidean
space R" (n = 1,2,3). The inner part of B is denoted by B and its boundary by 0B, B U 0B = B. The measure
of B is V and the measure of 0B is S. The space is referred to a cartesian coordinate system
(0; x;,i=1,...,n), and a point of B is indicated by the vector x of its coordinates. The time interval of
interest is 7 = [0,#,), and its open set is denoted by I = (0,7,).

The state of the body is described by the displacement vector u(x,?) and the temperature 7(x,¢), in
B x I, and by the strain tensor €(X,?), the stress tensor a(x,¢) and the heat flux vector q(x,?), in B x 1.
Tensors € and ¢ are symmetric. Contact force and thermal flux through an interface are on and q - n, re-
spectively, where n is the unit outward normal vector on the interface.

The distributed load p(x), independent of 7, and the heat source y(x, #) are prescribed in B. The boundary
0B is subdivided into five parts, independent of ¢: 0B,, 0B,, and 0By, 0B,, 0B., such that 0B, U0B, =
0Br UOB, U 0B. = 0B, 0B, N 0B, = (), and the mutual intersections among 0By, 0B, and 0B, are empty. The
displacement u(x) and the traction t(x), both independent of ¢, are prescribed on B, and 3B;, respectively.
The temperature T(x,?), the contact flux g(x,?), and the convective flux (7 — 7.), where k(> 0) is the
convective exchange coefficient and 7, is the temperature of the surrounding medium, are prescribed on
0By, 0B, and 0B, respectively. Temperature 7, is independent of x and ¢.

The transient thermoelastic problem (Carlson, 1972) consists in determining the response of the body in
terms of u, 7, €, ¢, q due to the above data, according to the following relationships in I:

compatibility equations

€ =symgradu in B, (1)
g=grad7 in B, (2)
u=u on 0B, (3)
T=T on 0By, (4)
where g is the heat strain vector (the analogue of strain €),
equilibrium and thermal balance equations
dive +p=0 in B, (5
—divq+7y—T)CA-é—pcT =0 in B, (6)
en=t on 0B, (7)
q-n=g on 0B, (8)
q-n=x(T—T.) on oA, )
constitutive equations
6 =Cle — A(T - 1)), (10)
q= —kg, (11)

with the initial temperature condition, at f = 0,

T|0:T0 in B, (12)
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where C is the tensor of the elastic stiffness moduli, k, the tensor of the conductivity moduli, A, the tensor of
the thermal expansion coefficients, ¢, the specific heat, p, the material density, 7j, the constant reference
temperature at which the body is assumed to be free of stresses, Ty, the initial temperature, n, the unit
outward normal vector on 0B, and the superimposed dot means differentiation with respect to time. Tensor
C is symmetric and positive definite, and the same features are assumed for tensor k (Prigogine, 1961).
Moreover, tensor A is symmetric, specific heat ¢ and material density p are positive.

The differential operators in Egs. (1), (2), (5) and (6) are connected by the bilinear (Gauss—Green)
identities:

/v-diVWdV:—/symgradv-WdV+/ v- WndS, (13)
B B 0B

/vdivde:—/gradv-de+/ vw - ndsS, (14)
B B 0B

where v, v and w, W are respectively a function, two vectors of functions and a symmetric tensor of
functions of x, which are assumed to be sufficiently regular.

All the material moduli and quantities in the previous equations are assumed to be constant with respect
to € and 7. Under this assumption, the problem described by Egs. (1)-(12) is linear.

If g is eliminated between Egs. (2) and (11), Fourier’s law is obtained. By eliminating strain € between
Egs. (10) and (6), the thermal balance equation can be rewritten as

—divq+7y — THA - 6 — ypcT =0, (15)

where the coefficient y = 1 + Ty(pc) 'CA - A is greater than one.

In the energy balance Eq. (6), the third term accounts for the mechanical energy involved in the ther-
moelastic coupling — thermoelastic coupling term. The consequence of the coupling is that thermal and
stress analyses should be simultaneously carried out. Dropping the thermoelastic coupling term leads to the
semicoupled theory, suitable for conventional materials, where the temperature is separately determined
through thermal analysis alone and subsequently prescribed for stress analysis.

3. The variational formulation

The formulation developed in this section is specifically aimed at mixed finite element models in the
space domain.

The linear coupled thermoelastic problem can be rephrased in terms of displacement u, temperature 7,
stress ¢ and heat flux q by means of the variational (Petrov—Galerkin) statement:

/S[HE(u,a)+HT(T,q)]dt+/Gdt—C0:0 V(3u, 86,37, 3q), (16)

1 1

where

1
HE(u,a):—E/a-C’ladV—/a~A(T—To)dV—/u-(diva—i—p)dV—i—/ on-udsS
B B

B 0By
+/ (on—T) - uds (17)
0B,

is the Hellinger—Reissner functional (Washizu, 1982),
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1
HT(T,q):—E/qk’lqu—f—/T(divq—y)dV—/
B B [

_/a( [Tq-n—%K(T— T(,)Z] ds T (18)

is the analogous, mixed functional in heat conduction (Fraeijs de Veubeke and Hogge, 1972), the functional

Tq-ndS—/ T(q-n—g)dS
a8,

G(u,T,8T) = / [TOCA~ (symgrad u)" + ch} drdv (19)
B
takes into account the thermoelastic coupling and the rate of thermal energy, and the functional
Co(T,8T) = / pe(T|y — To) 8T |, dV (20)
B

introduces the initial temperature datum. Notice that the functional IT* should not be varied with respect to
T, as the term A(T — T;) does play the role of initial strain for the elastic problem. By assuming functions
u, o, T and q sufficiently regular in B for identities (13) and (14), the variation of functionals (17) and (18)
yields for statement (16) the explicit form:

/{/80’-[—C10'+symgradu—A(T—T0)}dV—/ Scm-(u—ﬁ)dS+/6u~(diV0'+p)dV
1

B 0By B

+ du - (anff)dS7/6q~ (k"'q+gradT)dV + 3q-n(T —T)dS
B

0B, 0Bt

+ / 3T[divq — y + TyCA - (symgradu) + pcT]dV — / 3T(q-n—g)dS
B 0B,

— [ 8T[q - n—x(T-T,) dS} dr— / 8T |ypc(T|y — To)dV =0 V(3u,de,dT, 3q), (21)
B

[

which results in Egs. (1)-(12). As a consequence, the solution of problem (1)—(12) meets statement (16) —
necessary and sufficient condition.

The requirements of regularity in space for functions u, 7, ¢, q, and their variations in Eq. (16), can be
relaxed on a finite number of interfaces in B, for semidiscretization through finite elements. On this regard,
domain B is subdivided into E non-overlapping open subdomains B,, e = 1,..., E, with boundary 0B,,
B, = B, UdB,, U.B, = B. The intersection, if any, between 0B, and a part of 0B is denoted by 0B,,, 0B,.,
0Br., 0B, and 0B.., in accordance with the relevant part of 9B. The interdomain between two contiguous
subdomains is denoted by p;,j=1,...,N.

On the generic interdomain, the continuity is relaxed for tractions and heat flux, and the temperature is
defined independently of the temperature on the adjacent subdomains. Then, statement (16) becomes

/ > o1 (u,0) + TL(T,q, T,)]dt + / > Gedt—> Coe=0  V(5u,0,5T,5q,57,87), (22)
1 e 1 e e
where Hf, G, and C, are the specialization of expressions (17), (19), (20) to the eth subdomain, and

- - 1 - - _
HZ(T,q,T,q):—E/ q-k”qu—i—/ T(divq—y)dV—/ Tq-ndS+/ (T —T)gdS
B,

Be 0B, 0B7.

+/ fqu+1/ k(T — T.)*dS, (23)
By 2

0Bce

where T(x, ) is the temperature on 0B, and §(x,?) is a Lagrangian multiplier defined on 0By,.
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The variation on IT° and II” in statement (22), making use of identities (13) and (14) — see Appendix A —,
results for each subdomain B, in the same field equations and boundary static and kinematic conditions of
statement (16), and in the thermal boundary conditions:

T—T=0 on 0By, (24)
g—q-n=0 on 0By, (25)
q-n—g=0 on 0B,, (26)
q-n—x(T—T,)=0 on 0B, (27)
T—-T=0 onB,. (28)
Moreover, the continuity interdomain conditions for tractions and heat flux are obtained:
(o-n);’—i-(an)j_:() onp, j=1,...,N, (29)
(q-m) +(q-n); =0 onp;, j=1,...N. (30)

In the following, functions ¢ are assumed to satisfy a priori equilibrium Eq. (5) for each subdomain, and
functions ¢ are employed in lieu of €, via Eq. (10), to express the thermoelastic dissipation. Hence, the
functionals

Hf(u,a):—l/ a~C_ladV—/ a-A(T—TO)dV+/ an-ﬁdS+/ (en —t) -udS, (31)

2 B, Be 0By 0Bye

G (s, T,ST):/(TOA-6+xch)8TdV (32)
B,

replace functionals IT¥ and G, in Eq. (22), which becomes finally
/ > o[ (w,0) + 111(T,q, T,§))dt + / > Gldr—=Y " Co=0 V(du,36,5T,3q,57,57).  (33)
1 e 1 e e

Therefore, equilibrium is satisfied strongly and thermal balance expression (15) is met weakly, in B,. In this
way, the variables in B, are only the functions ¢, T and q, independent for each subdomain, and functions u
and T are defined and continuous on the whole of the interdomains.

4. The mixed model

Functionals (31) and (23) are rewritten in the synthetic form:

1
Hf’(u,o'):——/ o'-CfladV—/ o--A(T—To)dV+/ u- (on —t)dS, (34)
2 Be B, J 0B,
- - 1 -
(raD) =5 [ak'qar+ [ rdva-nar- [ Tan-gds (35)
B, B, 0B,

where t and ¢ are, respectively, the traction and the heat flux acting on 9B,, to be specialized in accordance
with the prescribed conditions for forces and heat flux on 0B, if present. Boundary conditions on u and T
are not accounted for here, as they are enforced directly, where prescribed on 0B. Thus, the variational
statement (33) for the generic subdomain B, can be rewritten as
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/ s(nfr + HT) dr + / G"dl— Coe =0 V(u, 36,37, 5q,57), (36)
1 1

where G and C,, are given by Egs. (32) and (20).
Stress o is formally split as follows:

6 =0,+0y, (37)

dive, = —p, (38)

dive, =0, (39)
and heat flux q is analogously split as

q=q,+q, +q, (40)

divg, =7, (41)

divq, =0, (42)

where 6, and q, are particular integrals of Egs. (5) and (6), respectively, 6 and q, are indeterminate null-
divergence fields, and q, is an indeterminate field which is introduced to offset the rate dependent terms in
transient conditions, Eq. (15). Hence, functional (35) reduces to

mn"(1r,q,7) = —% / q-kflqu—&-/ Tdivq,dV — / T(q-n—q)ds, (43)
Be B. 0B,

and the model is of mixed type as Eq. (15) is met weakly. If the model is applied to stationary thermoelastic
problems, then the term q, can be dropped and the model becomes of hybrid type (Pian, 1973; Cannarozzi
et al., 2000), on the whole.

In the following, the standard matrix notation is employed. Each function dependent on space and time
will be expressed as product of a function of x alone and a function of ¢ alone.

Stress, heat flux and temperature in a subdomain B, are represented as follows:

on(X,1) = Ph(x)B; (1),  a,(x,0) = La(x)¥, (1), q,(x,2) = Li(x),(2), (44)
T(x,t) = Np(x)t(t), (45)

where P, L;, L, and Ny are matrices of basis functions and the vectors of indeterminate amplitudes f,, ¥,,,
¥, and 7 are inner variables for B,.
Displacement and temperature on 0B, are represented as follows

u(x, ) = N,(x)v(r), T(x,7) = Nz(x)%(2), (46)
where N, and N; are again matrices of basis functions, and v and 7 are vectors of indeterminate amplitudes
and constitute the interdomain variables for the model.

With the above assumptions, the variational statement (36) specializes as follows:

8, " (|[H;, 0 —GI' 0 A |8, g5 0

3, 0 H, 0 G! -GI'l|\y,| |g 0

v G, 0 0 0 0 ||v|+]|g|—|h]|]|ds
R 0 G. 0 0 o0 |z g.| |h

5t 0 G. 0 o0 o0 |l 0 0

+ / St (L ATB, + Wi)dr — 81| (Wr|y —10) =0 V(3B,, 3, Ov, 87, 51). (47)
1
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All the expressions of matrices and vectors in the above equation are given in Appendix B (I). In the first
term, vector ¥, collects the heat flux parameters ¥, and ¥,, and vectors h, and h; are the (definition of the)
generalized nodal forces and nodal heat fluxes, respectively. Matrices Hg and H,,, symmetric and positive
definite, are the compliance and resistivity matrices of the model, and matrices G, and G;, G, are static load
and thermal load connection matrices, respectively. Matrix A accounts for the strain due to temperature as
well as for the thermoelastic dissipation (second term) and introduces asymmetry in the whole coefficient
matrix, due to coupling. Vectors g & and g,, g; collect known nodal quantities due to the distributed
thermal and static quantities given in B,. In the second and third terms, W and W are symmetric, positive
definite matrices, and W represents the thermal inertia matrix of the model.

Imposing that the variational statement (47) is fulfilled for each 6, and &y, with dv =67 =
ot = 41|, = 0 leads to the compatibility equations of the model by which the inner variables g, and ¥, are
eliminated. The resulting variational statement reads as

svl' /K, 0 —K.||v] |p,| [|h
/ ot 0 *K{- Kff T + P:| — hf d¢
Y 0 -K! K ||z| [p,| |0 (48)

+ / St" (KLY + M. t)dr — 8¢ | (W, —10) =0 V(dv, %, 87),
1

where the definitions of matrices and vectors are given in Appendix B (IT). Condition (48) yields the coupled
relation between generalized nodal forces/heat fluxes and nodal displacements/temperatures, i.e. the ele-
mental equilibrium/thermal balance equations, and the initial conditions:

h,_; 0 0 O Y KU O _Km' A4 pv

hf = 0 0 0 T + 0 —K; Kff T + P: |, (49)
0 LKL 0 M. ||t 0 —-K. K. ||| |p.
WT|0 — Ty = 0, (50)

respectively.

Following the standard finite element procedure (Zienkiewicz and Taylor, 1989), the nodal equilibrium
and thermal balance equations can be assembled starting from Eq. (49) and the displacement and tem-
perature boundary conditions are subsequently enforced.

Eq. (48) is the starting point for variationally based time integration methods in thermoelastic analysis,
where temperature and displacement parameters are discretized in the time domain (Ubertini, 1998;
Mancuso et al., 1998). On the other hand, the differential Eq. (49), with the initial condition (50), is the basis
for the thermoelastic analysis by finite difference time integration methods (Hughes, 1987). Both variational
and finite difference time integration methods can be implemented using a staggered or a monolithic so-
lution scheme (Wood, 1990).

5. A finite element implementation

In this section, a finite element scheme of representation in the space domain is derived from the pro-
posed model, the related properties of stability, consistency and invariance are investigated, and some
aspects concerning the computational burden are discussed.

Elemental matrices and vectors are conveniently computed working in a local (element) reference system
(0;%;) and using a local node numbering — see Fig. 1 for the bidimensional case. The element geometry is
described by means of a parametric representation, as usual in the finite element approach. The dis-
placement u and the interelement temperature 7 are represented, according to Eq. (46), in terms of nodal
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Fig. 1. Local reference system and node numbering for the bidimensional case.

values and shape functions defined onto the natural domain (master element), with nodes placed on the
element boundary. The inner temperature 7" can be represented by means of algebraic functions defined
onto either the physical or the natural domain, as 7 is a variable internal to each element. For a coherent
assumption, the representation assumed for 7 should match the one for 7 on the element boundary, in the
sense that they would have the same number of free parameters on the element boundary — hierarchical
representation of 7" (Zienkiewicz and Taylor, 1989).

The null-divergence stress field 6, and heat flux field q, can be deduced from algebraic stress and stream
functions, ®(X) and w(X), defined in the local reference system, as follows (subscript /;, denotes differen-
tiation with respect to X;):

bidimensional case

T T
G, = |O'h11 02 Op12 |7 q, = |‘Ih1 qn2 ‘a
Op11 = q)/2‘27 Op22 = q)/l,h Op12 = _(I)/l,Z; (51)
qn = W2, gpp = —W/1, (52)
tridimensional case
T _ T _
0, = |0'h11 Op22  Op33  Op23  Ojp13 Opl2 |7 q, = Iqm qdn2 93 |,
ont = Pz, 2 = Doj13, o3z = D310, (53)
Op12 = (D3/343, Op13 = ‘D2/2,27 Op23 = (D1/1,17 (54)
qm = 0123, gn = W2/13, G = 03/12 (55)

under the constraints
D)y + Doy + D33 =0, W) + wy + w3 = 0.

It can be easily verified that both the above sets of assumptions fulfill conditions (39) and (42), respectively.
The stress function scheme for the tridimensional case was proposed by Zanaboni (1936).
The representation of g, is developed with the aim of offsetting both the rate dependent terms, according to

divq, = —THoA - 6), — xch, (56)
which is obtained by substituting Eqs. (40) and (37) into Eq. (15). For this purpose, the representation of g,
is directly related to the one of stress 6, by requiring that the space of divq, coincides with the space of the

stress rate term 7oA - 64, in accordance with the following scheme:
bidimensional case

q,T = \%1 qn |, Al = |0611 oy 202 \, qn = 0622(1’/1 - 0112(1)/2, 4 = 0611(1)/2 - 0612(1’/1, (57)
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tridimensional case

=lqn 90 4qsl, Al = lor o omz 2003 2043 2002, (58)

= %(szzq)z/l 3+ 033®3)12) + 203Dy 11, (59)

qn = %( o @23 + a33®s3/10) + 2003Ds)2,, (60)
qn = %(0611(1)1/23 + 00,51 3) + 2005D33 3. (61)

In this way, the representation of q, in the space domain stems directly from the assumed stress functions.
Note that only the modes of q, linearly independent from those assumed for q, should be retained in the
above representations, in order to avoid singularity in the resistivity matrix Hy.

For the purpose of element stability, stress and stream functions are to be selected, so that no (kinematic
or thermal) spurious or zero energy modes arise, i.e. so that the elemental stiffness and conductivity ma-
trices are rank sufficient. The stability condition for finite element models based on a general multi-variable
variational approach has been investigated (Xue and Atluri, 1985) based on the Babuska—Brezzi condition
(e.g. Brezzi and Fortin, 1991). For the present model, the necessary conditions for the absence of a zero
energy mode can be expressed explicitly as

N = n, — ng, (62)
Rgh + 1y, = ny +nj — 1, (63)

where ng,, 1, ngn, Ny, nr and ny are respectively the number of parameters in the representations of e, u, q;,,
q,, T and T, n, is the number of the element rigid body motions, and number 1 in Eq. (63) stands for the
constant temperature distribution which is admitted without heat strain. As a consequence, once the dis-
placement and temperature representations are assumed, the minimum number of stress and flux param-
eters are determined. It is evident that the smaller the value of ny, and (n,, + n,,), the lower is the computing
cost for eliminating stress and heat flux parameters at the element level. Moreover, a better performance is
expected if the number of stress and heat flux modes is equal or close to the value determined by Egs. (62)
and (63), respectively. In fact, a large number of assumed stress modes could lead to increased stiffness
(Pian, 1973), and the same consideration holds for heat flux.

For a coherent implementation, the consistency between the spatial representations of mechanical and
thermal variables should be considered; otherwise, inaccurate results and unreliable stress predictions could
be obtained (Prathap and Naganarayana, 1995). The second term in functional (34) expresses the work
done by the stress on the strain due to temperature (thermal strain). This term leads to matrix A and once
stress and heat flux parameters are condensed out, to the thermoelastic coupling matrix K,.. Then, the
compatibility equations of the model correctly reflect the assumed temperature representation, if the as-
sumed stress representation works on the whole thermal strain. In fact, only the part of the thermal strain
on which the stress does work is actually sensed by the solution in terms of both displacements and stresses.
As a consequence, the representation space of each stress component should include the representation
space of the corresponding thermal strain component, as a necessary requirement for the consistency of the
model (de Miranda and Ubertini, 1999). In this way, the temperature enters properly in the computation of
matrix A. Moreover, if the assumed stress modes are not energy-orthogonal to any strain modes — in the
sense of the work integral expressed by the third term in Eq. (34) — the above condition is also sufficient to
prevent from spurious outcomes in the stress recovery. In fact, this further requirement on stress as-
sumptions secures that all thermal modes actually participates in computing the coupling matrix K,..
Therefore, the representations of stress 6, displacement u and temperature 7 should be matched according
to the above consistency condition, and if the number of stress modes is close or equal to the number of
strain modes, then the best behaviour is expected. Consistency condition is to be clearly verified onto the
physical domain. As a consequence, element geometry distortions can provoke loss of consistency, if the
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temperature 7 is defined onto the natural domain. In fact, owing to the coordinate transformation, the
resulting representation in the physical domain is generally no more fully algebraic (e.g. Cannarozzi and
Mondelli, 1998), and consistency is restricted to the algebraic part only. Obviously, the loss of consistency
does not occur, if the temperature 7 is directly defined onto the physical domain. Based on the consid-
erations about consistency, the reason why inner and boundary temperatures have been separated appears
more clearly. In fact, the improvement in the thermal response is obtained through a more flexible rep-
resentation of temperature, without acting on the degree of its representation and without affecting the
consistency with the stress representation. Finally, it is worthwhile to note that if the consistency condition
is met and the representation of q, is obtained from stress functions as previously described, then the fun-
ction space of divgq, in the spatial domain coincides with the one of the whole right-hand side in Eq. (56).

A further condition to be satisfied is the invariance of the model with respect to any coordinate change,
in the sense that implementing it in the local system of coordinates or, alternatively, in the global one
should lead to the same result (Sze et al., 1992). This requirement secures that the finite element imple-
mentation is independent of the local system adopted. The interelement displacement and temperature, v
and 7, the stress o, and the heat flux q, meet invariance as well as the inner temperature 7 if defined onto
the natural domain. With regard to 6;, q, and q, as well as to 7 if defined directly in terms of the local
coordinates, element invariance is met if complete representations are assumed. In fact, completeness se-
cures that a polynomial basis does not change under a linear transformation of coordinates, i.e. by
changing the reference coordinate frame. For stress and heat flux, this is obtained by assuming complete
stress and stream functions. Some considerations about the relative invariance can be added. If a repre-
sentation is of degree g but complete up to degree g — 1, then only invariance with respect to translation of
axes is retained. In general, invariance is kept for the modes up to the maximum degree of completeness. In
the bidimensional case, if a representation is invariant with respect to a /2 rotation of the reference axes,
then, invariance with respect to node numbering is kept, due to the local reference system adopted, Fig. 1.

Finally, some attention deserves the computational issue. Unlike standard compatible finite elements, an
extra computational cost for eliminating stress and heat flux parameters is required. Moreover, both the
global vectors of temperature degrees of freedom, say 7, and 7,, as well as the global vector of displacement
degrees of freedom, say v,, are unknown in the semidiscrete system of equations. As can be observed, the
interelement temperatures 7, and displacement v, can be obtained directly in terms of 7, as

Ve = K;1 (Kiete — p,)s T, = _K;I (Kztg +ps), (64)

where matrices and vectors are to be intended as assembled and the boundary conditions applied. Sub-
stituting these expressions into the remaining equation yields

M., + K1, +p, =0, (65)
where
K. =K, +K! K. 'K+, p,=p, +K.K'p.,, M, =M, + K K'K,.

Matrices K, and M, are symmetric and positive definite and M, represents a modified capacity matrix due
to the thermoelastic dissipation. It emerges that, although heavy, eliminating the intereclement degrees of
freedom could be convenient. In fact, time integration can be carried out in Eq. (65) instead of on the whole
assembly. Moreover, standard implementation of direct time integration algorithms as well as modal de-
composition procedure can be applied due to the symmetric and standard form of Eq. (65). From the
authors’ experience, the better accuracy of the mixed model offsets in general the computational burden, as
is shown in the following through some numerical tests.
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6. Numerical tests

The guidelines exposed in Section 5 have been applied to develop three plane, quadrilateral, parametric
finite elements, described in the following. The assumed stress and heat flux representations are given in
Appendix C.

Element M44. Displacement and temperature 7 are represented on each side by linear shape functions
(n, = 2 x 4 and n; = 4), based on corner nodes (four-node scheme), and inner temperature 7' is represented
by bilinear functions defined onto the natural domain (n, = 4). Stress field o, and heat flux field q, are
obtained via Egs. (51) and (52) from a cubic stress function @ (ny = 7) and a quadratic stream function @
(ng, = 5). With these assumptions, the element is not stable, as the element conductivity matrix has one
spurious mode. In order to stabilize the element, heat flux field q, is derived via Eq. (57) using a function )
obtained by enriching the polynomial basis of function ® with the monomials X%, and x5 (n,, = 7).
Invariance with regard to translation of axes and node numbering is kept, and the assumed stress repre-
sentation is consistent only with the linear part of the temperature representation. Anyway, spurious
outcomes in the stress recovery are prevented and the function space of divgq, still coincides with the one of
the rate dependent terms in regular geometry. Notice that for steady state analysis, the element can be also
used in the hybrid version, which is obtained by dropping the heat flux q, and the inner temperature 7. For
computing the coupling matrix A, the element interior temperature distribution is interpolated by taking
the bilinear shape functions corresponding to the assumed representation for 7 on the element boundary.
In this version, the element is invariant, as well as stable and consistent with the linear part of the tem-
perature representation, and the stress recovery is still free from spurious outcomes.

Element M48. Displacement is represented on each side by quadratic shape functions (n, = 2 x 8), based
on corner and midside nodes (eight-node scheme), whereas temperature 7T is represented on each side by
linear shape functions (n; = 4), based on corner nodes (four-node scheme). Inner temperature 7 is rep-
resented by bilinear functions defined onto the natural domain (n, = 4). Stress field ¢, and heat flux field
q, are obtained via Eqs. (51) and (52) from a quintic stress function ® (ny, = 18) and a quadratic stream
function  (n,, = 5), and the representation of heat flux q, is obtained according to Eq. (57) (n,, = 16). With
these assumptions, the element is stable, fully consistent in regular geometry and invariant, but the resulting
number of flux parameters appears to be too large with respect to the minimum number dictated by
Eq. (63). With regard to steady state analysis, the hybrid version of M48 can be implemented in the
same manner of M44, and the resulting element is still stable, fully consistent in regular geometry and
invariant.

Element M88. Displacement and temperature 7T are represented on each side by quadratic shape func-
tions (n, =2 x 8 and n; = §), based on corner and midside nodes (eight-node scheme), and inner tem-
perature T is represented by quadratic serendipity functions defined onto the natural domain (n, = 8).
Stress field 6;, and heat flux field q, are obtained via Eqgs. (51) and (52) from a quintic stress function ®
(ns, = 18) and a quadratic stream function  (n,, = 5), and the representation of heat flux q, is obtained
according to Eq. (57) (n, = 16). With these assumptions, the element is stable, fully consistent in regular
geometry and invariant. With regard to steady state analysis, the hybrid version of this element is not stable
on the thermal side and a cubic stream function w is to be used (n, =9) (Cannarozzi et al., 2000).
Moreover, for computing the coupling matrix A, the element interior temperature distribution is inter-
polated by taking the quadratic serendipity shape functions corresponding to the assumed representation
for T on the element boundary. In this version, the element is still stable, fully consistent in regular ge-
ometry and invariant.

Notice that, in the above elements, securing invariance is preferred to secure full consistency in the
presence of element distortions, owing to the choice of representing the inner temperature on the natural
domain. Alternatively, the above elements can also be implemented by directly defining the representation
of T in the local system. In this way, consistency in distorted geometry is retained and invariance is kept
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only with regard to translation and node numbering. This second possibility has also been investigated, but
it is not further illustrated as the resultant elements exhibit almost the same performance of those described
above.

The proposed elements are tested in two reference cases and compared with the usually employed finite
elements based on displacement and temperature interpolation. In particular, the results obtained with the
following temperature/displacement plane elements are included:

e (C44: lagrangian four-node temperature and displacement interpolations,
e (48: lagrangian four-node temperature and serendipity eight-node displacement interpolations,
e (88: serendipity eight-node temperature and displacement interpolations.

Notice that elements C44 and C88 are not consistent, so stresses computed directly from the elastoki-
nematic equations can show extrancous oscillations (Prathap and Naganarayana, 1995), which originate
from the mismatch between element strain and strain due to temperature. These spurious outcomes could
be mitigated or eliminated resorting to some procedures proposed in the literature, but here no special
technique is employed and the stress recovery is performed via the elastokinematic equations, since com-
patible elements have been included only for comparison.

In the following numerical tests, the interelement and displacement degrees of freedom are eliminated
after the semidiscretization and time integration is performed using the modal decomposition procedure
(e.g. Hughes, 1987) by exactly integrating each single mode. In this way, the numerical results are free from
the errors which would be inevitably introduced by time stepping algorithms, and the performance of the
model can be assessed more clearly. The integrals in the mixed model are evaluated using the gaussian
quadrature rule. The proper number of quadrature points to evaluate exactly the integrals has been em-
ployed. A consistent system of units is assumed.

6.1. Test 1

This case test is derived from Danilovskaya’s problem (Danilovskaya, 1950) by suitably modifying the
displacement boundary conditions. An elastic isotropic homogeneous layer of thickness L, density p,
Young’s modulus E, Poisson ratio v = 0.3, thermal expansion coefficient o, specific heat ¢, and thermal
conductivity k is considered. The layer is initially at the uniform reference temperature 7,, the bottom
surface (x; = 0) is restrained and insulated, and the top surface (x; = L) is restrained — differently from
Danilovskaya’s problem. At ¢ = 0, the temperature on the top surface is abruptly raised and maintained at
the constant value T + A7. A measure of the thermoelastic coupling is given by the dimensionless ther-
moelastic coupling parameter:

(1 +Vv)2ET,
(1 —v)(1 =2v)pc’

(s:

where 6 = 0 corresponds to the uncoupled case. For traditional materials, ¢ ranges from 0.01 to 0.1. Here,
the thermoelastic coupling parameter is assumed as ¢ = 0.5 (e.g. Carter and Booker, 1989; Tay, 1992),
which corresponds to sensible coupling effects, typical of some non-traditional materials, such as certain
high-performance composites (Rao and Sinha, 1997).

The problem described is one dimensional and the finite element solutions are obtained using a uniform
six-element mesh. The reference solution in terms of displacement, temperature, stress and heat flux is
obtained using a uniform finite element mesh, consisting of 100 C88 elements. Indicating with superscript r
the reference values and with superscript 4 the computed values, the local errors are measured by the
following normalized quantities:
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_ (1 B V) h r _ h r

=Ty vanar i Tm e =ap =T, (66)
_ (1 - 2V) h r _ L h r

€oij = 2EAT (O-ij O-z'j)’ €qi = KAT (¢ — ) (67)

The displacement error e,; and the temperature error ey in A are plotted in Fig. 2 versus the dimen-
sionless time 1, t = (kt)/(pcL?*). Likewise, the stress error e, and the heat flux error e,; in B are plotted in
Fig. 3. The results obtained with element C48 by halving the element size have also been included in both
the figures. The error values at some significant instants are given in Table 1. To give an idea of the
computational effort, Table 2 gives the number of degrees of freedom in the semidiscrete equations ob-
tained with mixed and compatible elements.

As can be clearly observed, mixed elements are considerably more accurate than the compatible ones
having the same number of nodes. In particular, the local errors relative to mixed elements are rather
uniform and limited even in the initial transient, differently from compatible elements. This reveals a good
accuracy also in the higher modes of the semidiscretization, and good predictions are obtained even though
a coarse mesh is used. On the other hand, the error curves of compatible elements show that a mesh re-
finement is required for increasing their accuracy especially in the short term. However, the performance of
mixed elements is still better even if compared with the one exhibited by C48 for 12 x 1 element mesh. It is
worth noting that the semidiscretization consisting in 12 x 1 C48 elements has the largest number of de-
grees of freedom, on the whole. Moreover, C48 is the element generally employed for thermoelastic analysis
owing to its consistency. With regard to the relative performance of mixed elements, M48 appears to be
slightly stiff on the thermal side, as the number of flux parameters is much larger than the number of
temperature degrees of freedom.

The sensitivity of the mixed model to element geometry distortions is investigated by solving the same
problem using a series of six-element meshes with progressively distorted elements, Fig. 4(a). Note that all
elements have the same area. The distortion is measured by the parameter ¢, which ranges from 0 to 57/12.
The errors are plotted against the distortion parameter in Figs. 4 and 5, at 1 = 0.25. Fig. 4 shows the
displacement error e,; and the temperature error ey in A, whereas Fig. 5 shows the stress error e,;; and the
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Fig. 2. Test 1 — error time histories in A: (a) displacement u; and (b) temperature.
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Fig. 3. Test 1 — error time histories in B: (a) normal stress a1, and (b) heat flux ¢;.
Table 1
Test 1 — errors in displacement u; and temperature in A, and in normal stress ¢y, and heat flux ¢, in B (see Figs. 2 and 3)
Element Errors t=0.1 t=0.3 t=0.5 =07 t=0.9
M44 e, x 1073 —6.1567 1.2455 1.7442 1.5008 1.1864
er x 1074 —4.0366 —0.3928 2.6771 4.2755 4.3426
es1 x 1072 2.5733 0.8358 0.3404 0.0979 —0.0111
eq x 1073 —17.2183 4.2777 4.0837 3.0229 2.1663
M48 e, x 1074 -9.0198 1.7802 2.2408 1.8930 1.2838
er x 1074 —6.7224 —2.1410 2.7605 4.3322 44186
e, x 1072 —1.0043 —0.3702 —0.3467 —0.2666 —0.1570
eq x 1073 —22.5067 4.1226 4.1855 3.1629 2.2540
MS88 e, x 1074 0.5175 0.3765 0.2413 0.1522 0.0959
er x 1074 4.0536 2.5455 1.5903 1.0012 0.6307
e, x 1072 —0.1572 —0.1007 —0.0633 —0.0399 —0.0251
e x 1073 0.4266 0.4781 0.3107 0.1960 0.1234
C44 e, x 1074 —33.2769 —3.6450 —0.1168 0.7988 1.0255
er x 1074 —25.5404 —40.2045 —19.1697 —6.4363 —0.4679
e, x 1072 9.3075 4.3292 2.3224 1.2057 0.5988
eq x 1073 —60.7727 0.5673 3.9702 3.7835 3.3234
C48 e, x 1074 —30.7978 —4.1552 —0.8428 0.1569 0.5094
er x 1074 —38.6050 —45.8564 —24.2124 —10.8205 —3.9904
e, x 1072 1.0937 1.1108 0.4360 0.0820 —0.0694
eq x 1073 —56.1140 0.4269 3.1755 3.0774 2.7556
C88 e, x 1074 —6.7353 —4.6951 —2.9510 —1.8491 —1.1585
er x 1074 —54.6990 —31.9930 —20.0054 —12.5338 —7.8530
e, x 1072 —0.6125 0.4482 0.2755 0.1502 0.0689
eq x 1073 —1.8594 -9.6074 —6.2408 -3.9177 —2.4556
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Table 2
Test 1 — number of degrees of freedom of the semidiscrete system of equations
Number of degrees of M44 M48 MS88 C44 C48 C88 C48
freedom 6x1 6x1 6x1 6x1 6x1 6x1 12 x 1
Displacement 28 66 66 28 66 66 126
Temperature 24 24 48 14 14 33 26
Total 52 90 114 42 80 99 152
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Fig. 4. Sensitivity to geometric distortion, at T = 0.25: (a) error in displacement u; in A and (b) temperature error in A.
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heat flux error ¢,, in C. No tables have been included due to the clarity of the figures. As can be observed,
all the errors relative to mixed elements vary only slightly as the distortion parameter increases. On the
contrary, compatible elements are much more sensitive to element distortions.

6.2. Test 2

An elastic isotropic homogeneous square plate of side length L, density p, Young’s modulus E, Poisson
ratio v = 0.3, thermal expansion coefficient ¢, specific heat ¢, and thermal conductivity k is considered. The
plate is initially at the uniform reference temperature 7, and two adjacent sides (x; = 0 and x, = 0) are
restrained and insulated. At ¢ = 0, the temperature on the other two adjacent sides (x; =L and x, = L) is
abruptly raised and maintained at the constant value 7, + AT. As in the previous test, the thermoelastic
coupling parameter of the material is 0.5. The problem is solved using a uniform 5 x 5 element mesh and
the reference solution is carried out using a uniform mesh with 100 C88 elements per side. The local errors
in displacement, temperature, stress and heat flux are measured in accordance with Egs. (66) and (67).

The time histories of the displacement error ¢,; in A and the temperature error er in B are shown in Fig.
6, whereas the time histories of the stress error e,;; and the heat flux error e, in C are shown in Fig. 7. Table
3 gives some of the related numerical values. As in the previous test, the numerical response of element C48
obtained by halving the element size of the discretization has been included for a more comprehensive
comparison. An indication about the computational cost can be drawn from Table 4, which gives the
number of degrees of freedom for various finite element semidiscretizations.

The results qualitatively reflect those of the previous test and confirm the good qualities of the mixed
model. In particular, the solutions provided by the mixed elements are in good agreement with the reference
solution over all the time range of interest. The relevant errors are much smaller than those of the com-
patible elements with equal number of nodes, especially in the short term. This confirms the better accuracy
of the mixed elements in the higher modes of response, which are of importance in the initial transient.
Halving the element size, the accuracy of C48 increases but it is still poor in comparison with M48 and
MS88, although its larger number of degrees of freedom. On the thermal side, also element M44 is com-
petitive with C48 for 10 x 10 element mesh, being more accurate in predicting both temperature and heat
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Fig. 6. Test 2 — error time histories: (a) displacement u; in A and (b) temperature in B.
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Table 3
Test 2 — errors in displacement #; in A, in temperature in B, and in normal stress o5, and heat flux ¢, in C (see Figs. 6 and 7)
Element Errors t=0.1 =03 t=0.5 t=0.7 =09
M44 e, x 1073 0.2919 1.1710 1.7281 1.8343 1.9043
er x 1073 —9.3088 —2.3783 —0.4079 0.0386 0.1054
€5 X 1072 0.3462 —2.8204 —3.8948 —4.2729 —-4.4914
e, x 1072 5.7521 1.0599 0.4671 0.2221 0.1048
M43 e, x 1073 1.8754 0.3040 0.0209 —0.1589 —0.2688
er x 1073 —10.0928 —2.8230 —0.4833 0.1000 0.1551
e,m x 1072 1.7141 0.0409 —0.2751 —0.4590 —0.5664
e, x 1072 6.4608 1.0094 0.4775 0.2482 0.1252
M388 e, x 1073 —0.1379 —0.3468 —0.3785 —0.3889 —0.3923
er x 1073 —0.3371 —0.4943 —0.2496 —0.1189 —0.0559
e, X 1072 —0.4853 —0.5995 —0.6513 —0.6717 —0.6794
e, x 1072 —0.9290 —0.2240 —0.0954 —0.0420 —0.0185
C44 e, x 1073 12.4916 5.7186 3.5191 2.8145 2.2084
er x 1073 7.2313 20.2367 11.2207 5.7158 2.8251
e, x 1072 —1.5645 —3.9592 —4.4048 —4.7363 —4.9492
e, x 1072 22.5337 4.9547 2.2500 1.0611 0.4960
C48 e, x 1073 11.2958 4.1125 2.0889 1.2416 0.8897
er x 1073 7.1854 16.8633 8.9090 4.3852 2.1143
€5 X 1072 9.0387 1.9854 0.0766 —0.8066 —1.2252
e, x 1072 21.4100 4.5550 1.9954 0.9138 0.4170
C88 e, x 1073 1.0717 0.5791 0.4224 0.3514 0.3189
er x 1073 3.3567 2.1342 0.9853 0.4470 0.2020
e, x 1072 —0.8335 —1.2075 —1.4187 —1.5139 —1.5565
e, x 1072 —2.0821 —0.3411 —0.1872 —0.1037 —0.0530
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Table 4

Test 2 — number of degrees of freedom of the semidiscrete system of equations
Number of degrees M44 M48 MS88 C44 C48 C88 C48
of freedom 5x5 5x5 5x5 5x5 5x5 5x5 10 x 10
Displacement 72 192 192 72 192 192 682
Temperature 100 100 200 36 36 96 121
Total 172 292 392 108 228 288 803

flux in spite of its smaller number of temperature degrees of freedom. Finally, as noticed in the previous
test, the error curves in temperature and heat flux show that element M48 is slightly stiff in predicting the
thermal variables.

7. Concluding remarks

The method of analysis herein presented constitutes an alternative approach for linear, coupled ther-
moelastic analysis from both conceptual and applicative standpoints. The method is of mixed type, and for
this feature, it gives direct information on all the quantities involved in the thermoelastic problem. The
elastic part is of hybrid type, and the thermal part is based on the mixed flux-temperature formulation.
Thermal equilibrium for field heat sources is met a priori. Thermal balance and initial conditions are en-
forced weakly using temperature as a Lagrange multiplier, and the thermoelastic dissipation term is ex-
pressed via the constitutive equations in terms of stress and temperature rates. In the finite element model,
temperature within the element is represented independently of temperature on the element boundary. This
permits to improve the thermal response without affecting the consistency between stress and temperature
approximations.

A comprehensive guideline to a finite element implementation is presented. Three quadrilateral elements
are proposed and their qualities are shown through some test cases, drawing a comparison with the
standard approach based on displacement and temperature interpolations. In all the tests performed, the
mixed elements exhibit a good accuracy over all the time interval of interest, even though relatively coarse
meshes are used. Moreover, the mixed elements perform considerably better than the compatible ones with
equal number of nodes, especially in the short term response. Comparable overall accuracy can be obtained
with compatible finite elements by properly refining the semidiscretization, but a larger number of degrees
of freedom is required on the whole. Finally, the mixed model shows a reduced sensitivity to element ge-
ometry distortions. In the authors’ experience, the better overall accuracy of the mixed model presented
generally offsets the computation burden which is higher than the one required by the standard finite el-
ement approach based on displacements and temperature. Therefore, the mixed model appears to be re-
liable and effective for coupled thermoelastic analysis.
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Appendix A

Explicit form of statement (22):

/Z{/ 8¢ - [~ C'o + symgradu — A(T — Tp)|dV — Sen - (u—u)dS
15 Be

0Bye

+/ du- (dive +p)dV + du- (on — t)dS
B,

0Bre

—/ 3q - (k‘lq+gradT)dV+/

Be OB7e

dq(T — T)d5+/ 8T(§ —q-n)dS

0B,

+/ ST(divq — v+ THCA - (symgradu) + ch)dV — / 3T(q-n—q)dS
B. 0By

_/a ST[q.n_K(T_TC)}dS-F/aBBSq-n(T—T)dS}dt

ce

+/, Z{ / o7 (@ m); + (a-w); | + / Bu- [(ow), + <an>_,}}dt

Pj

-3 / 8T|ypc(T|, — To)dV =0 VY(3u,da, 3T, 5q, 3T, 5q).
e Be

Appendix B

(I) The expressions of matrices and vectors in Eq. (47) are

W = / 7pcNIN7dV, A:/ PIAN.dV, W:/ peNIN,dV,
B, B. Be

Hy = /B P,C 'P,dV, H¢:/B Lk 'L, dV, gl/,:/B L)k 'q,dv,

G: = s NIn'L,dS, G, = ’0 /B N}diledV', = NIn'q,ds,
G, = i N,N'P,dS, g, = / P,(C s, — THA)dV, g, = /6 NIN'g,ds,
B, Be )Be

Ty = / pcNIT dV, hv:/ N'tds, hfz/ NJgds,
Be 0B, 0B,

where ¥, = |y, ¢! |, L, =|L; L,|,and N is the matrix containing the direction cosines of the outward
normal to 0B,. If a part of the element boundary lies on 0B,, the equivalent thermal load vector is

hi = / N}7gds.
9B.M0B,

Moreover, if a part of the element boundary lies on 0B,, the term due to convective heat exchange in Eq.
(43) reads as

2
/ L (Nﬁ — T) ds,
0B.N0B,

and the resulting thermal load vector is obtained by differentiating the above term with respect to 7:
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h? = KC%OBC - hc7
where vector 755, collects the components of 7 relative to 0B, and

1 ]
- / kKNIN;dS, h. == / kN;T.dS.
2 0B.NOB, 2 0B.NOB,

(IT) The expressions of matrices and vectors in Eq. (48) are

1T - -1
Kz; = GUH/} Guv er = GvH/ﬁ A’ P, =8 — G"H/f gﬁ’

K. =

K:=G:H,'G], K.=GH,'G], K.=GH,'G]

p:=g. +GH)'g,, p,=-GH'g,, M.=W-TA"HA.

Appendix C

Element stress and flux representations
Element M44

1 00 x 0 X 0
P,=(0 1 0 0 ¥ 0 x|
001 0 0 —x -x
Lh = o ,O = Xi )
0 1 X1 0 —X2
L% ¥ 0 2yx ¥ 3Xnm X
xn 0 B Em X 3R

Element M48

1 00x 0 x 0 X2 %% ¥ 0 0 0 0 % 3%2%,
P,=/0 1 0 0 % 0 =x X3 0 0 ¥ 2% ¥ 3% 3%% %3
001 0 0 —%» -% 2y - 0 0 —-x 0 -¥ -3¥%n —3%%
1 0 0 % *x
Lh - _ 8 i )
0 1 X1 0 —X2
LM ¥ o0 2yx ¥ 3xnm ©» ¥ 0 xx ¥ 46y 3o 260
Tl o002 2 2n 8 e 0 B ©2n 0 ¥ 28n 308
Element M88
1 00x 0 x 0 ¥ o 2% ¥ 0 0 0 0 x 3x3%
P,=10 1 0 0 x, 0 X X3 0 0 ¥ 2yxm ¥ 3¥n  3%% x
001 0 0 —%» —-x% -2 -x» 0 0 - 0 -x =3¢xn -39

737
3% X
0 0]
-x 0
¥ 0
dxw w|
3% X
0 01,
-x 0
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I 0 0 x X

L, = _ -
1 X1 0 —)Q’
L_|® ¥ 0 2vx; ¥ 3x¥xm x ox 0 xx3 x 4xx, 3xx 20x  x3 0
R 0 32 ¥2 2% X -3 3x 32 0 ¥ 2y 0 ¥4 2)?37 37272 45 ¥ |
X X5 X X1X2 X, X1X5 X5 X{X2 X X2 OX[X;  4AX1X; X,
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