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Abstract

A variational method for linear coupled quasi-static thermoelastic analysis is presented. The variational support is a

statement in terms of displacement, temperature, stress and heat ¯ux. The statement is based on the hybrid stress

formulation for the elastic part and on the mixed ¯ux±temperature formulation for the thermal one, and includes the

rate dependent terms of the energy balance equations and the initial condition. A ®nite element model for the semi-

discrete analysis is developed within this variational framework, and a guideline for implementing a family of ther-

moelastic ®nite elements is given. Some test cases enlighten the e�ectiveness and reliability of the approach

proposed. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Thermal stresses play a speci®c role in solid mechanics (Boley and Weiner, 1960; Nowacki, 1986). In the
case of traditional materials, thermal e�ects on a body are limited to strains due to the temperature gra-
dient, which is autonomously determined and constitutes a datum for stress analysis. In the case of so-
phisticated materials (e.g. high performance composites), thermal e�ects can include heat production due to
strain rate, i.e. the thermoelastic dissipation. In this case, thermal and stress analyses are coupled. An
analytical treatment of such problems is hardly ever possible for reasons of mathematical complexity, so
that the development of alternative methods of analysis is essential. On this purpose, a variational for-
mulation of the coupled thermoelastic problem can be of interest, both as a theoretical contribution and as
a sound support for a suitable method of analysis.

With regard to the ®rst aspect, Biot (1956) ®rst gave a variational principle for the coupled problem of
thermoelasticity, in terms of displacement and entropy ¯ow. Further, contributions of Herrmann (1963)
and Ben-Amoz (1965) generalize Biot's principle. Principles �a la Gurtin were given by Iesan (1966), Nickell
and Sackman (1968), Rafalski (1968) ± see also the survey paper of Carlson (1972). By introducing the heat
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displacement (a vector function whose divergence is, by de®nition, the temperature) as a variable, Ke-
ramidas and Ting (1976) presented a variational principle in displacements and in this new variable, and
derived a ®nite element model. From a di�erent side, Askar Atlay and Cengiz D�okmeci (1996) have
provided for a comprehensive framework of variational principles in the standard kinematic, dynamic and
thermal variables.

The variational approach chie¯y followed in the applications seems to be the compatible one, i.e. in
displacement and temperature (e.g. Carter and Booker, 1989; Tamma and Namburu, 1991; Tay, 1992; Rao
and Sinha, 1997), certainly for its simplicity and versatility. The possibility of combining the assumed strain
mixed approach (Atluri et al., 1983) with the customary temperature approach (Hogge and Fraeijs de
Veubeke, 1972) is presented by Zhu and Cescotto (1995), with emphasis on the ®nite element implemen-
tation for stress analysis and only a marginal consideration for thermoelastic coupling. More recently, the
authors have presented a mixed ®nite element model for thermoelastic analysis (Cannarozzi and Ubertini,
1998), which anticipates some issues exposed in the sequel.

This paper moves from the authors' opinion that a procedure of analysis which involves directly both
primal variables ± displacement and temperature in this case ± and dual variables ± stress and heat ¯ux ±
can be more convenient, not only for obtaining a better accuracy in the results, but also for the possibility
of controlling independently all the quantities involved in a process. On this premise, the paper presents an
integrated, mixed method for treating linear coupled thermoelastic problems in the quasi-static case ± the
inertia terms are disregarded. Indeed, this case can be meaningful for real materials (Atarashi and Min-
agawa, 1992), and especially for non-traditional ones. The method is essentially based on the Hellinger±
Reissner principle in the hybrid version (Atluri et al., 1983) ± modi®ed minimum complementary energy
principle ± for the elastic part, and on the analogous principle in heat conduction (Fraeijs de Veubeke and
Hogge, 1972) for the thermal one. So, the ®eld variables of the variational problem, on the whole, are stress,
heat ¯ux and temperature, and the boundary variables are displacement and temperature. The variational
statement which supports the method encompasses: the functionals of the above principles, a functional
which takes into account the thermoelastic dissipation and the energy related to the temperature rate, and a
functional accounting for the initial temperature condition. Stresses are assumed in equilibrium with the
®eld load, according to the hybrid stress model. As is well known, one of the advantages of this approach is
to be free of locking. The thermoelastic dissipation is expressed in terms of stress rate via constitutive law to
eliminate strain rate as a ®eld variable. For the rate dependent terms, the energy balance is enforced weakly
by employing the temperature as a Lagrange multiplier, whereas thermal equilibrium for ®eld heat sources
is ful®lled in advance, so that the approach on the thermal side is of mixed type, and becomes formally of
hybrid type for the steady state problem. This last approach has been experienced with satisfactory results
and proposed by the authors (Cannarozzi et al., 1999, 2000) in heat conduction analysis. In the ®nite el-
ement discretization, temperature within the element and temperature at the interelement are represented
independently of each other. This aims at improving the thermal response of the model without a�ecting
the consistency between stress and temperature representations (de Miranda and Ubertini, 1999). Stress
and heat ¯ux parameters are eliminated at the element level. Thus, at the assembly level, the statement
yields, besides the initial conditions, the discretized energy balance equations and the interelement equi-
librium equations for stresses and heat ¯ux and involves the inner temperature and the interelemental
displacement and temperature. The integration in the time domain can be implemented following a method
with variational support (e.g. Ubertini, 1998; Mancuso et al., 1998), as well as a ®nite di�erence based
procedure (e.g. Hughes, 1987).

Entering into the details of the exposition, Section 2 accounts for the equations of the initial±boundary
value problem. The corresponding variational formulation is given in Section 3, and the relevant mixed
model is exposed in Section 4. A ®nite element implementation is developed and discussed with regard to
stability, consistency and invariance in Section 5. Some numerical tests, exposed in Section 6, account for
the superior convergence and accuracy properties of the proposed ®nite element scheme in comparison with
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the compatible model, with particular regard to mesh distortion sensitivity. This shows that the higher
computational expense is widely o�set by the quality in the results. Some concluding remarks end the
paper.

2. The initial±boundary value problem

Consider a body which at the time t � 0 occupies the closed and bounded domain �B of the euclidean
space Rn (n � 1; 2; 3). The inner part of �B is denoted by B and its boundary by oB, B [ oB � �B. The measure
of B is V and the measure of oB is S. The space is referred to a cartesian coordinate system
�O; xi; i � 1; . . . ; n�; and a point of �B is indicated by the vector x of its coordinates. The time interval of
interest is �I � �0; tf �, and its open set is denoted by I � �0; tf �.

The state of the body is described by the displacement vector u�x; t� and the temperature T �x; t�, in
�B� �I , and by the strain tensor ��x; t�, the stress tensor r�x; t� and the heat ¯ux vector q�x; t�, in B� �I .
Tensors � and r are symmetric. Contact force and thermal ¯ux through an interface are rn and q � n, re-
spectively, where n is the unit outward normal vector on the interface.

The distributed load p�x�, independent of t, and the heat source c�x; t� are prescribed in B. The boundary
oB is subdivided into ®ve parts, independent of t: oBu, oBt, and oBT , oBq, oBc, such that oBu [ oBt �
oBT [ oBq [ oBc � oB, oBu \ oBt � ;, and the mutual intersections among oBT , oBq and oBc are empty. The
displacement �u�x� and the traction �t�x�, both independent of t, are prescribed on oBu and oBt, respectively.
The temperature �T �x; t�, the contact ¯ux �q�x; t�, and the convective ¯ux j�T ÿ Tc�, where j�> 0� is the
convective exchange coe�cient and Tc is the temperature of the surrounding medium, are prescribed on
oBT , oBq and oBc, respectively. Temperature Tc is independent of x and t.

The transient thermoelastic problem (Carlson, 1972) consists in determining the response of the body in
terms of u, T, �, r, q due to the above data, according to the following relationships in I:

compatibility equations

� � symgradu in B; �1�
g � grad T in B; �2�
u � �u on oBu; �3�
T � �T on oBT ; �4�

where g is the heat strain vector (the analogue of strain �),
equilibrium and thermal balance equations

divr� p � 0 in B; �5�
ÿ divq� cÿ T0CA � _�ÿ qc _T � 0 in B; �6�
rn � �t on oBt; �7�
q � n � �q on oBq; �8�
q � n � j�T ÿ Tc� on oBc; �9�

constitutive equations

r � C �� ÿ A�T ÿ T0��; �10�
q � ÿ kg; �11�

with the initial temperature condition, at t � 0,

T j0 � �T0 in B; �12�
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where C is the tensor of the elastic sti�ness moduli, k; the tensor of the conductivity moduli, A, the tensor of
the thermal expansion coe�cients, c, the speci®c heat, q, the material density, T0, the constant reference
temperature at which the body is assumed to be free of stresses, �T0, the initial temperature, n, the unit
outward normal vector on oB, and the superimposed dot means di�erentiation with respect to time. Tensor
C is symmetric and positive de®nite, and the same features are assumed for tensor k (Prigogine, 1961).
Moreover, tensor A is symmetric, speci®c heat c and material density q are positive.

The di�erential operators in Eqs. (1), (2), (5) and (6) are connected by the bilinear (Gauss±Green)
identities:Z

B
v � divWdV � ÿ

Z
B

symgrad v �WdV �
Z

oB
v �WndS; �13�

Z
B

vdivwdV � ÿ
Z

B
gradv � wdV �

Z
oB

vw � ndS; �14�

where v, v and w, W are respectively a function, two vectors of functions and a symmetric tensor of
functions of x, which are assumed to be su�ciently regular.

All the material moduli and quantities in the previous equations are assumed to be constant with respect
to � and T. Under this assumption, the problem described by Eqs. (1)±(12) is linear.

If g is eliminated between Eqs. (2) and (11), Fourier's law is obtained. By eliminating strain � between
Eqs. (10) and (6), the thermal balance equation can be rewritten as

ÿdivq� cÿ T0A � _rÿ vqc _T � 0; �15�
where the coe�cient v � 1� T0�qc�ÿ1

CA � A is greater than one.
In the energy balance Eq. (6), the third term accounts for the mechanical energy involved in the ther-

moelastic coupling ± thermoelastic coupling term. The consequence of the coupling is that thermal and
stress analyses should be simultaneously carried out. Dropping the thermoelastic coupling term leads to the
semicoupled theory, suitable for conventional materials, where the temperature is separately determined
through thermal analysis alone and subsequently prescribed for stress analysis.

3. The variational formulation

The formulation developed in this section is speci®cally aimed at mixed ®nite element models in the
space domain.

The linear coupled thermoelastic problem can be rephrased in terms of displacement u, temperature T,
stress r and heat ¯ux q by means of the variational (Petrov±Galerkin) statement:Z

I
d PE�u; r�� �PT �T ; q��dt �

Z
I

Gdt ÿ C0 � 0 8�du; dr; dT ; dq�; �16�

where

PE�u; r� � ÿ 1

2

Z
B

r � Cÿ1rdV ÿ
Z

B
r � A�T ÿ T0�dV ÿ

Z
B

u � �divr� p�dV �
Z

oBu

rn � �u dS

�
Z

oBt

�rnÿ�t� � udS �17�

is the Hellinger±Reissner functional (Washizu, 1982),
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PT �T ; q� � ÿ 1

2

Z
B

q � kÿ1q dV �
Z

B
T �divqÿ c� dV ÿ

Z
oBT

�T q � n dS ÿ
Z

oBq

T �q � nÿ �q�dS

ÿ
Z

oBc

T q � n
�

ÿ 1

2
j�T ÿ Tc�2

�
dS �18�

is the analogous, mixed functional in heat conduction (Fraeijs de Veubeke and Hogge, 1972), the functional

G�u; T ; dT � �
Z

B
T0CA � symgrad u� ��
h

� qc _T
i
dT dV �19�

takes into account the thermoelastic coupling and the rate of thermal energy, and the functional

C0�T ; dT � �
Z

B
qc�T j0 ÿ �T0�dT j0 dV �20�

introduces the initial temperature datum. Notice that the functional PE should not be varied with respect to
T, as the term A�T ÿ T0� does play the role of initial strain for the elastic problem. By assuming functions
u, r, T and q su�ciently regular in B for identities (13) and (14), the variation of functionals (17) and (18)
yields for statement (16) the explicit form:Z

I

Z
B

dr � �
�

ÿ Cÿ1r� symgraduÿ A�T ÿ T0��dV ÿ
Z

oBu

drn � �uÿ �u�dS �
Z

B
du � divr� � p�dV

�
Z

oBt

du � �rnÿ�t�dS ÿ
Z

B
dq � kÿ1q

ÿ � gradT
�

dV �
Z

oBT

dq � n�T ÿ �T �dS

�
Z

B
dT �divqÿ c� T0CA � symgradu� �� � qc _T �dV ÿ

Z
oBq

dT �q � nÿ �q�dS

ÿ
Z

oBc

dT �q � nÿ j�T ÿ Tc��dS
�

dt ÿ
Z

B
dT j0qc�T j0 ÿ �T0�dV � 0 8�du; dr; dT ; dq�; �21�

which results in Eqs. (1)±(12). As a consequence, the solution of problem (1)±(12) meets statement (16) ±
necessary and su�cient condition.

The requirements of regularity in space for functions u, T, r, q, and their variations in Eq. (16), can be
relaxed on a ®nite number of interfaces in B, for semidiscretization through ®nite elements. On this regard,
domain B is subdivided into E non-overlapping open subdomains Be, e � 1; . . . ;E, with boundary oBe,
�Be � Be [ oBe, [e

�Be � �B. The intersection, if any, between oBe and a part of oB is denoted by oBue, oBte,
oBTe, oBqe and oBce, in accordance with the relevant part of oB. The interdomain between two contiguous
subdomains is denoted by qj; j � 1; . . . ;N .

On the generic interdomain, the continuity is relaxed for tractions and heat ¯ux, and the temperature is
de®ned independently of the temperature on the adjacent subdomains. Then, statement (16) becomesZ

I

X
e

d�PE
e �u; r� � ~PT

e �T ; q; ~T ; ~q��dt �
Z

I

X
e

Ge dt ÿ
X

e

C0e � 0 8�du; dr; dT ; dq; d~T ; d~q�; �22�

where PE
e , Ge and C0e are the specialization of expressions (17), (19), (20) to the eth subdomain, and

~PT
e �T ; q; ~T ; ~q� � ÿ 1

2

Z
Be

q � kÿ1qdV �
Z

Be

T �divqÿ c�dV ÿ
Z

oBe

~T q � ndS �
Z

oBTe

�~T ÿ �T �~qdS

�
Z

oBqe

~T �qdS � 1

2

Z
oBce

j�~T ÿ Tc�2 dS; �23�

where ~T �x; t� is the temperature on oBe and ~q�x; t� is a Lagrangian multiplier de®ned on oBTe.
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The variation on PE
e and ~PT

e in statement (22), making use of identities (13) and (14) ± see Appendix A ±,
results for each subdomain Be in the same ®eld equations and boundary static and kinematic conditions of
statement (16), and in the thermal boundary conditions:

~T ÿ �T � 0 on oBTe; �24�
~qÿ q � n � 0 on oBTe; �25�
q � nÿ �q � 0 on oBqe; �26�
q � nÿ j� ~T ÿ Tc� � 0 on oBce; �27�
~T ÿ T � 0 on oBe: �28�

Moreover, the continuity interdomain conditions for tractions and heat ¯ux are obtained:

�rn��j � �rn�ÿj � 0 on qj; j � 1; . . . ;N ; �29�
�q � n��j � �q � n�ÿj � 0 on qj; j � 1; . . . N : �30�

In the following, functions r are assumed to satisfy a priori equilibrium Eq. (5) for each subdomain, and
functions _r are employed in lieu of _�, via Eq. (10), to express the thermoelastic dissipation. Hence, the
functionals

PH
e �u; r� � ÿ

1

2

Z
Be

r � Cÿ1r dV ÿ
Z

Be

r � A�T ÿ T0�dV �
Z

oBue

rn � �u dS �
Z

oBte

�rnÿ�t� � u dS; �31�

GH
e �r; T ; dT � �

Z
Be

�T0A � _r� vqc _T �dT dV �32�

replace functionals PE
e and Ge in Eq. (22), which becomes ®nallyZ

I

X
e

d�PH
e �u; r� � ~PT

e �T ; q; ~T ; ~q��dt �
Z

I

X
e

GH
e dt ÿ

X
e

C0e � 0 8�du; dr; dT ; dq; d ~T ; d~q�: �33�

Therefore, equilibrium is satis®ed strongly and thermal balance expression (15) is met weakly, in Be. In this
way, the variables in Be are only the functions r, T and q, independent for each subdomain, and functions u

and ~T are de®ned and continuous on the whole of the interdomains.

4. The mixed model

Functionals (31) and (23) are rewritten in the synthetic form:

PHr
e �u; r� � ÿ

1

2

Z
Be

r � Cÿ1rdV ÿ
Z

Be

r � A�T ÿ T0�dV �
Z

oBe

u � �rnÿ t�dS; �34�

~PTr
e �T ; q; ~T � � ÿ 1

2

Z
Be

q � kÿ1q dV �
Z

Be

T �divqÿ c�dV ÿ
Z

oBe

~T �q � nÿ q�dS; �35�

where t and q are, respectively, the traction and the heat ¯ux acting on oBe, to be specialized in accordance
with the prescribed conditions for forces and heat ¯ux on oB, if present. Boundary conditions on u and ~T
are not accounted for here, as they are enforced directly, where prescribed on oB. Thus, the variational
statement (33) for the generic subdomain Be can be rewritten as
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Z
I

d PHr
e

�
� ~PTr

e

�
dt �

Z
I

GH
e dt ÿ C0e � 0 8�du; dr; dT ; dq; d ~T �; �36�

where GH
e and C0e are given by Eqs. (32) and (20).

Stress r is formally split as follows:

r � rp � rh; �37�
divrp � ÿp; �38�
divrh � 0; �39�

and heat ¯ux q is analogously split as

q � qc � qt � qh; �40�
divqc � c; �41�
divqh � 0; �42�

where rp and qc are particular integrals of Eqs. (5) and (6), respectively, rh and qh are indeterminate null-
divergence ®elds, and qt is an indeterminate ®eld which is introduced to o�set the rate dependent terms in
transient conditions, Eq. (15). Hence, functional (35) reduces to

~PTr
e �T ; q; ~T � � ÿ 1

2

Z
Be

q � kÿ1qdV �
Z

Be

T divqt dV ÿ
Z

oBe

~T �q � nÿ q�dS; �43�

and the model is of mixed type as Eq. (15) is met weakly. If the model is applied to stationary thermoelastic
problems, then the term qt can be dropped and the model becomes of hybrid type (Pian, 1973; Cannarozzi
et al., 2000), on the whole.

In the following, the standard matrix notation is employed. Each function dependent on space and time
will be expressed as product of a function of x alone and a function of t alone.

Stress, heat ¯ux and temperature in a subdomain Be are represented as follows:

rh�x; t� � Ph�x�bh�t�; qh�x; t� � Lh�x�wh�t�; qt�x; t� � Lt�x�wt�t�; �44�

T �x; t� � NT �x�s�t�; �45�
where Ph, Lh, Lt and NT are matrices of basis functions and the vectors of indeterminate amplitudes bh, wh,
wt and s are inner variables for Be.

Displacement and temperature on oBe are represented as follows

u�x; t� � Nu�x�v�t�; ~T �x; t� � N ~T �x�~s�t�; �46�
where Nu and N ~T are again matrices of basis functions, and v and ~s are vectors of indeterminate amplitudes
and constitute the interdomain variables for the model.

With the above assumptions, the variational statement (36) specializes as follows:

Z
I

dbh

dwht

dv

d~s

ds

�����������

�����������

T
Hb 0 ÿGT

v 0 K

0 Hw 0 GT
~s ÿGT

s

Gv 0 0 0 0

0 G~s 0 0 0

0 Gs 0 0 0

������������

������������

bh

wht

v

~s

s

�����������

�����������

0BBBBBB@ �

gb

gw

gv

g~s

0

�����������

�����������
ÿ

0

0

hv

h~s

0

�����������

�����������

1CCCCCCAdt

�
Z

I
dsT�T0K

T _bh � Ŵ _s�dt ÿ dsT
��
0
�Wsj0 ÿ s0� � 0 8�dbh; dwht; dv; d~s; ds�: �47�
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All the expressions of matrices and vectors in the above equation are given in Appendix B (I). In the ®rst
term, vector wht collects the heat ¯ux parameters wh and wt, and vectors hv and h~s are the (de®nition of the)
generalized nodal forces and nodal heat ¯uxes, respectively. Matrices Hb and Hw, symmetric and positive
de®nite, are the compliance and resistivity matrices of the model, and matrices Gv and G~s, Gs are static load
and thermal load connection matrices, respectively. Matrix K accounts for the strain due to temperature as
well as for the thermoelastic dissipation (second term) and introduces asymmetry in the whole coe�cient
matrix, due to coupling. Vectors gb, gv and gw, g~s collect known nodal quantities due to the distributed
thermal and static quantities given in Be. In the second and third terms, Ŵ and W are symmetric, positive
de®nite matrices, and W represents the thermal inertia matrix of the model.

Imposing that the variational statement (47) is ful®lled for each dbh and dwht with dv � d~s �
ds � dsj0 � 0 leads to the compatibility equations of the model by which the inner variables bh and wht are
eliminated. The resulting variational statement reads asZ

I

dv
d~s
ds

������
������
T

Kv 0 ÿKvs

0 ÿK~s K~ss

0 ÿKT
~ss Ks

������
������

v
~s
s

������
������

0@ �
pv

p~s

ps

������
������ÿ

hv

h~s

0

������
������
1Adt

�
Z

I
dsT�T0KT

vs _v�Ms _s�dt ÿ dsT
��
0
�Wsj0 ÿ s0� � 0 8�dv; d~s; ds�;

�48�

where the de®nitions of matrices and vectors are given in Appendix B (II). Condition (48) yields the coupled
relation between generalized nodal forces/heat ¯uxes and nodal displacements/temperatures, i.e. the ele-
mental equilibrium/thermal balance equations, and the initial conditions:

hv

h~s

0

������
������ �

0 0 0

0 0 0
T0KT

vs 0 Ms

������
������

_v
_~s
_s

������
�������

Kv 0 ÿKvs

0 ÿK~s K~ss

0 ÿKT
~ss Ks

������
������

v
~s
s

������
�������

pv

p~s

ps

������
������; �49�

Wsj0 ÿ s0 � 0; �50�
respectively.

Following the standard ®nite element procedure (Zienkiewicz and Taylor, 1989), the nodal equilibrium
and thermal balance equations can be assembled starting from Eq. (49) and the displacement and tem-
perature boundary conditions are subsequently enforced.

Eq. (48) is the starting point for variationally based time integration methods in thermoelastic analysis,
where temperature and displacement parameters are discretized in the time domain (Ubertini, 1998;
Mancuso et al., 1998). On the other hand, the di�erential Eq. (49), with the initial condition (50), is the basis
for the thermoelastic analysis by ®nite di�erence time integration methods (Hughes, 1987). Both variational
and ®nite di�erence time integration methods can be implemented using a staggered or a monolithic so-
lution scheme (Wood, 1990).

5. A ®nite element implementation

In this section, a ®nite element scheme of representation in the space domain is derived from the pro-
posed model, the related properties of stability, consistency and invariance are investigated, and some
aspects concerning the computational burden are discussed.

Elemental matrices and vectors are conveniently computed working in a local (element) reference system
�O; �xi� and using a local node numbering ± see Fig. 1 for the bidimensional case. The element geometry is
described by means of a parametric representation, as usual in the ®nite element approach. The dis-
placement u and the interelement temperature ~T are represented, according to Eq. (46), in terms of nodal
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values and shape functions de®ned onto the natural domain (master element), with nodes placed on the
element boundary. The inner temperature T can be represented by means of algebraic functions de®ned
onto either the physical or the natural domain, as T is a variable internal to each element. For a coherent
assumption, the representation assumed for T should match the one for ~T on the element boundary, in the
sense that they would have the same number of free parameters on the element boundary ± hierarchical
representation of T (Zienkiewicz and Taylor, 1989).

The null-divergence stress ®eld rh and heat ¯ux ®eld qh can be deduced from algebraic stress and stream
functions, U��x� and x��x�, de®ned in the local reference system, as follows (subscript =i denotes di�eren-
tiation with respect to �xi):

bidimensional case

rT
h � rh11 rh22 rh12j j; qT

h � qh1 qh2j j;
rh11 � U=2;2; rh22 � U=1;1; rh12 � ÿU=1;2; �51�

qh1 � x=2; qh2 � ÿx=1; �52�
tridimensional case

rT
h � rh11 rh22 rh33 rh23 rh13 rh12j j; qT

h � qh1 qh2 qh3j j;
rh11 � U1=2;3; rh22 � U2=1;3; rh33 � U3=1;2; �53�

rh12 � U3=3;3; rh13 � U2=2;2; rh23 � U1=1;1; �54�

qh1 � x1=2;3; qh2 � x2=1;3; qh3 � x3=1;2 �55�
under the constraints

U1=1 � U2=2 � U3=3 � 0; x1 � x2 � x3 � 0:

It can be easily veri®ed that both the above sets of assumptions ful®ll conditions (39) and (42), respectively.
The stress function scheme for the tridimensional case was proposed by Zanaboni (1936).

The representation of qt is developed with the aim of o�setting both the rate dependent terms, according to

divqt � ÿT0A � _rh ÿ vqc _T ; �56�

which is obtained by substituting Eqs. (40) and (37) into Eq. (15). For this purpose, the representation of qt

is directly related to the one of stress rh by requiring that the space of divqt coincides with the space of the
stress rate term T0A � _rh, in accordance with the following scheme:

bidimensional case

qT
t � qt1 qt2j j; AT � a11 a22 2a12j j; qt1 � a22U=1 ÿ a12U=2; qt2 � a11U=2 ÿ a12U=1; �57�

Fig. 1. Local reference system and node numbering for the bidimensional case.
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tridimensional case

qT
t � qt1 qt2 qt3j j; AT � a11 a22 a33 2a23 2a13 2a12j j; �58�

qt1 � 1
2
�a22U2=1;3 � a33U3=1;2� � 2a23U1=1;1; �59�

qt2 � 1
2
�a11U1=2;3 � a33U3=1;2� � 2a13U2=2;2; �60�

qt3 � 1
2
�a11U1=2;3 � a22U2=1;3� � 2a12U3=3;3: �61�

In this way, the representation of qt in the space domain stems directly from the assumed stress functions.
Note that only the modes of qt linearly independent from those assumed for qh should be retained in the
above representations, in order to avoid singularity in the resistivity matrix Hw.

For the purpose of element stability, stress and stream functions are to be selected, so that no (kinematic
or thermal) spurious or zero energy modes arise, i.e. so that the elemental sti�ness and conductivity ma-
trices are rank su�cient. The stability condition for ®nite element models based on a general multi-variable
variational approach has been investigated (Xue and Atluri, 1985) based on the Babuska±Brezzi condition
(e.g. Brezzi and Fortin, 1991). For the present model, the necessary conditions for the absence of a zero
energy mode can be expressed explicitly as

nsh P nu ÿ nr; �62�
nqh � nqt P nT � n ~T ÿ 1; �63�

where nsh, nu, nqh, nqt, nT and n ~T are respectively the number of parameters in the representations of rh, u, qh,
qt, T and ~T , nr is the number of the element rigid body motions, and number 1 in Eq. (63) stands for the
constant temperature distribution which is admitted without heat strain. As a consequence, once the dis-
placement and temperature representations are assumed, the minimum number of stress and ¯ux param-
eters are determined. It is evident that the smaller the value of nsh and �nqh � nqt�, the lower is the computing
cost for eliminating stress and heat ¯ux parameters at the element level. Moreover, a better performance is
expected if the number of stress and heat ¯ux modes is equal or close to the value determined by Eqs. (62)
and (63), respectively. In fact, a large number of assumed stress modes could lead to increased sti�ness
(Pian, 1973), and the same consideration holds for heat ¯ux.

For a coherent implementation, the consistency between the spatial representations of mechanical and
thermal variables should be considered; otherwise, inaccurate results and unreliable stress predictions could
be obtained (Prathap and Naganarayana, 1995). The second term in functional (34) expresses the work
done by the stress on the strain due to temperature (thermal strain). This term leads to matrix K and once
stress and heat ¯ux parameters are condensed out, to the thermoelastic coupling matrix Kvs. Then, the
compatibility equations of the model correctly re¯ect the assumed temperature representation, if the as-
sumed stress representation works on the whole thermal strain. In fact, only the part of the thermal strain
on which the stress does work is actually sensed by the solution in terms of both displacements and stresses.
As a consequence, the representation space of each stress component should include the representation
space of the corresponding thermal strain component, as a necessary requirement for the consistency of the
model (de Miranda and Ubertini, 1999). In this way, the temperature enters properly in the computation of
matrix K. Moreover, if the assumed stress modes are not energy-orthogonal to any strain modes ± in the
sense of the work integral expressed by the third term in Eq. (34) ± the above condition is also su�cient to
prevent from spurious outcomes in the stress recovery. In fact, this further requirement on stress as-
sumptions secures that all thermal modes actually participates in computing the coupling matrix Kvs.
Therefore, the representations of stress rh, displacement u and temperature T should be matched according
to the above consistency condition, and if the number of stress modes is close or equal to the number of
strain modes, then the best behaviour is expected. Consistency condition is to be clearly veri®ed onto the
physical domain. As a consequence, element geometry distortions can provoke loss of consistency, if the
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temperature T is de®ned onto the natural domain. In fact, owing to the coordinate transformation, the
resulting representation in the physical domain is generally no more fully algebraic (e.g. Cannarozzi and
Mondelli, 1998), and consistency is restricted to the algebraic part only. Obviously, the loss of consistency
does not occur, if the temperature T is directly de®ned onto the physical domain. Based on the consid-
erations about consistency, the reason why inner and boundary temperatures have been separated appears
more clearly. In fact, the improvement in the thermal response is obtained through a more ¯exible rep-
resentation of temperature, without acting on the degree of its representation and without a�ecting the
consistency with the stress representation. Finally, it is worthwhile to note that if the consistency condition
is met and the representation of qt is obtained from stress functions as previously described, then the fun-
ction space of divqt in the spatial domain coincides with the one of the whole right-hand side in Eq. (56).

A further condition to be satis®ed is the invariance of the model with respect to any coordinate change,
in the sense that implementing it in the local system of coordinates or, alternatively, in the global one
should lead to the same result (Sze et al., 1992). This requirement secures that the ®nite element imple-
mentation is independent of the local system adopted. The interelement displacement and temperature, v

and ~s, the stress rp, and the heat ¯ux qc meet invariance as well as the inner temperature T if de®ned onto
the natural domain. With regard to rh, qh and qt as well as to T if de®ned directly in terms of the local
coordinates, element invariance is met if complete representations are assumed. In fact, completeness se-
cures that a polynomial basis does not change under a linear transformation of coordinates, i.e. by
changing the reference coordinate frame. For stress and heat ¯ux, this is obtained by assuming complete
stress and stream functions. Some considerations about the relative invariance can be added. If a repre-
sentation is of degree g but complete up to degree g ÿ 1, then only invariance with respect to translation of
axes is retained. In general, invariance is kept for the modes up to the maximum degree of completeness. In
the bidimensional case, if a representation is invariant with respect to a p=2 rotation of the reference axes,
then, invariance with respect to node numbering is kept, due to the local reference system adopted, Fig. 1.

Finally, some attention deserves the computational issue. Unlike standard compatible ®nite elements, an
extra computational cost for eliminating stress and heat ¯ux parameters is required. Moreover, both the
global vectors of temperature degrees of freedom, say ~sg and sg, as well as the global vector of displacement
degrees of freedom, say vg, are unknown in the semidiscrete system of equations. As can be observed, the
interelement temperatures ~sg and displacement vg can be obtained directly in terms of sg as

vg � Kÿ1
v �Kvssg ÿ pv�; ~sg � ÿKÿ1

~s �K~sssg � p~s�; �64�

where matrices and vectors are to be intended as assembled and the boundary conditions applied. Sub-
stituting these expressions into the remaining equation yields

�Ms _sg � �Kssg � �ps � 0; �65�

where

�Ks � Ks � KT
~ssK

ÿ1
~s K~ss; �ps � ps � KT

~ssK
ÿ1
~s p~s; �Ms �Ms � T0KT

vsK
ÿ1
v Kvs:

Matrices �Ks and �Ms are symmetric and positive de®nite and �Ms represents a modi®ed capacity matrix due
to the thermoelastic dissipation. It emerges that, although heavy, eliminating the interelement degrees of
freedom could be convenient. In fact, time integration can be carried out in Eq. (65) instead of on the whole
assembly. Moreover, standard implementation of direct time integration algorithms as well as modal de-
composition procedure can be applied due to the symmetric and standard form of Eq. (65). From the
authors' experience, the better accuracy of the mixed model o�sets in general the computational burden, as
is shown in the following through some numerical tests.
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6. Numerical tests

The guidelines exposed in Section 5 have been applied to develop three plane, quadrilateral, parametric
®nite elements, described in the following. The assumed stress and heat ¯ux representations are given in
Appendix C.

Element M44. Displacement and temperature ~T are represented on each side by linear shape functions
(nu � 2� 4 and n ~T � 4�, based on corner nodes (four-node scheme), and inner temperature T is represented
by bilinear functions de®ned onto the natural domain (nt � 4). Stress ®eld rh and heat ¯ux ®eld qh are
obtained via Eqs. (51) and (52) from a cubic stress function U (nsh � 7) and a quadratic stream function x
(nqh � 5). With these assumptions, the element is not stable, as the element conductivity matrix has one
spurious mode. In order to stabilize the element, heat ¯ux ®eld qt is derived via Eq. (57) using a function Û
obtained by enriching the polynomial basis of function U with the monomials �x3

1�x2 and �x1�x3
2 (nqt � 7).

Invariance with regard to translation of axes and node numbering is kept, and the assumed stress repre-
sentation is consistent only with the linear part of the temperature representation. Anyway, spurious
outcomes in the stress recovery are prevented and the function space of div qt still coincides with the one of
the rate dependent terms in regular geometry. Notice that for steady state analysis, the element can be also
used in the hybrid version, which is obtained by dropping the heat ¯ux qt and the inner temperature T. For
computing the coupling matrix K, the element interior temperature distribution is interpolated by taking
the bilinear shape functions corresponding to the assumed representation for ~T on the element boundary.
In this version, the element is invariant, as well as stable and consistent with the linear part of the tem-
perature representation, and the stress recovery is still free from spurious outcomes.

Element M48. Displacement is represented on each side by quadratic shape functions (nu � 2� 8), based
on corner and midside nodes (eight-node scheme), whereas temperature ~T is represented on each side by
linear shape functions (n ~T � 4), based on corner nodes (four-node scheme). Inner temperature T is rep-
resented by bilinear functions de®ned onto the natural domain (nt � 4). Stress ®eld rh and heat ¯ux ®eld
qh are obtained via Eqs. (51) and (52) from a quintic stress function U (nsh � 18) and a quadratic stream
function x (nqh � 5), and the representation of heat ¯ux qt is obtained according to Eq. (57) (nqt � 16). With
these assumptions, the element is stable, fully consistent in regular geometry and invariant, but the resulting
number of ¯ux parameters appears to be too large with respect to the minimum number dictated by
Eq. (63). With regard to steady state analysis, the hybrid version of M48 can be implemented in the
same manner of M44, and the resulting element is still stable, fully consistent in regular geometry and
invariant.

Element M88. Displacement and temperature ~T are represented on each side by quadratic shape func-
tions (nu � 2� 8 and n ~T � 8), based on corner and midside nodes (eight-node scheme), and inner tem-
perature T is represented by quadratic serendipity functions de®ned onto the natural domain (nt � 8).
Stress ®eld rh and heat ¯ux ®eld qh are obtained via Eqs. (51) and (52) from a quintic stress function U
(nsh � 18) and a quadratic stream function x (nqh � 5), and the representation of heat ¯ux qt is obtained
according to Eq. (57) (nqt � 16). With these assumptions, the element is stable, fully consistent in regular
geometry and invariant. With regard to steady state analysis, the hybrid version of this element is not stable
on the thermal side and a cubic stream function x is to be used (nqh � 9) (Cannarozzi et al., 2000).
Moreover, for computing the coupling matrix K, the element interior temperature distribution is inter-
polated by taking the quadratic serendipity shape functions corresponding to the assumed representation
for ~T on the element boundary. In this version, the element is still stable, fully consistent in regular ge-
ometry and invariant.

Notice that, in the above elements, securing invariance is preferred to secure full consistency in the
presence of element distortions, owing to the choice of representing the inner temperature on the natural
domain. Alternatively, the above elements can also be implemented by directly de®ning the representation
of T in the local system. In this way, consistency in distorted geometry is retained and invariance is kept
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only with regard to translation and node numbering. This second possibility has also been investigated, but
it is not further illustrated as the resultant elements exhibit almost the same performance of those described
above.

The proposed elements are tested in two reference cases and compared with the usually employed ®nite
elements based on displacement and temperature interpolation. In particular, the results obtained with the
following temperature/displacement plane elements are included:
· C44: lagrangian four-node temperature and displacement interpolations,
· C48: lagrangian four-node temperature and serendipity eight-node displacement interpolations,
· C88: serendipity eight-node temperature and displacement interpolations.

Notice that elements C44 and C88 are not consistent, so stresses computed directly from the elastoki-
nematic equations can show extraneous oscillations (Prathap and Naganarayana, 1995), which originate
from the mismatch between element strain and strain due to temperature. These spurious outcomes could
be mitigated or eliminated resorting to some procedures proposed in the literature, but here no special
technique is employed and the stress recovery is performed via the elastokinematic equations, since com-
patible elements have been included only for comparison.

In the following numerical tests, the interelement and displacement degrees of freedom are eliminated
after the semidiscretization and time integration is performed using the modal decomposition procedure
(e.g. Hughes, 1987) by exactly integrating each single mode. In this way, the numerical results are free from
the errors which would be inevitably introduced by time stepping algorithms, and the performance of the
model can be assessed more clearly. The integrals in the mixed model are evaluated using the gaussian
quadrature rule. The proper number of quadrature points to evaluate exactly the integrals has been em-
ployed. A consistent system of units is assumed.

6.1. Test 1

This case test is derived from Danilovskaya's problem (Danilovskaya, 1950) by suitably modifying the
displacement boundary conditions. An elastic isotropic homogeneous layer of thickness L, density q,
Young's modulus E, Poisson ratio m � 0:3, thermal expansion coe�cient a, speci®c heat c, and thermal
conductivity k is considered. The layer is initially at the uniform reference temperature T0, the bottom
surface (x1 � 0) is restrained and insulated, and the top surface (x1 � L) is restrained ± di�erently from
Danilovskaya's problem. At t � 0, the temperature on the top surface is abruptly raised and maintained at
the constant value T0 � DT . A measure of the thermoelastic coupling is given by the dimensionless ther-
moelastic coupling parameter:

d � �1� m�a2ET0

�1ÿ m��1ÿ 2m�qc
;

where d � 0 corresponds to the uncoupled case. For traditional materials, d ranges from 0.01 to 0.1. Here,
the thermoelastic coupling parameter is assumed as d � 0:5 (e.g. Carter and Booker, 1989; Tay, 1992),
which corresponds to sensible coupling e�ects, typical of some non-traditional materials, such as certain
high-performance composites (Rao and Sinha, 1997).

The problem described is one dimensional and the ®nite element solutions are obtained using a uniform
six-element mesh. The reference solution in terms of displacement, temperature, stress and heat ¯ux is
obtained using a uniform ®nite element mesh, consisting of 100 C88 elements. Indicating with superscript r
the reference values and with superscript h the computed values, the local errors are measured by the
following normalized quantities:
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eui � �1ÿ m�
�1� m�aLDT

�uh
i ÿ ur

i �; eT � 1

DT
�T h ÿ T r�; �66�

erij � �1ÿ 2m�
aEDT

�rh
ij ÿ rr

ij�; eqi � L
k DT

�qh
i ÿ qr

i �: �67�

The displacement error eu1 and the temperature error eT in A are plotted in Fig. 2 versus the dimen-
sionless time s, s � �kt�=�qcL2�. Likewise, the stress error er11 and the heat ¯ux error eq1 in B are plotted in
Fig. 3. The results obtained with element C48 by halving the element size have also been included in both
the ®gures. The error values at some signi®cant instants are given in Table 1. To give an idea of the
computational e�ort, Table 2 gives the number of degrees of freedom in the semidiscrete equations ob-
tained with mixed and compatible elements.

As can be clearly observed, mixed elements are considerably more accurate than the compatible ones
having the same number of nodes. In particular, the local errors relative to mixed elements are rather
uniform and limited even in the initial transient, di�erently from compatible elements. This reveals a good
accuracy also in the higher modes of the semidiscretization, and good predictions are obtained even though
a coarse mesh is used. On the other hand, the error curves of compatible elements show that a mesh re-
®nement is required for increasing their accuracy especially in the short term. However, the performance of
mixed elements is still better even if compared with the one exhibited by C48 for 12� 1 element mesh. It is
worth noting that the semidiscretization consisting in 12� 1 C48 elements has the largest number of de-
grees of freedom, on the whole. Moreover, C48 is the element generally employed for thermoelastic analysis
owing to its consistency. With regard to the relative performance of mixed elements, M48 appears to be
slightly sti� on the thermal side, as the number of ¯ux parameters is much larger than the number of
temperature degrees of freedom.

The sensitivity of the mixed model to element geometry distortions is investigated by solving the same
problem using a series of six-element meshes with progressively distorted elements, Fig. 4(a). Note that all
elements have the same area. The distortion is measured by the parameter u, which ranges from 0 to 5p=12.
The errors are plotted against the distortion parameter in Figs. 4 and 5, at s � 0:25. Fig. 4 shows the
displacement error eu1 and the temperature error eT in A, whereas Fig. 5 shows the stress error er11 and the

Fig. 2. Test 1 ± error time histories in A: (a) displacement u1 and (b) temperature.
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Fig. 3. Test 1 ÿ error time histories in B: (a) normal stress r11 and (b) heat ¯ux q1.

Table 1

Test 1 ± errors in displacement u1 and temperature in A, and in normal stress r11 and heat ¯ux q1 in B (see Figs. 2 and 3)

Element Errors s � 0:1 s � 0:3 s � 0:5 s � 0:7 s � 0:9

M44 eu1 � 10ÿ3 ÿ6.1567 1.2455 1.7442 1.5008 1.1864

eT � 10ÿ4 ÿ4.0366 ÿ0.3928 2.6771 4.2755 4.3426

er11 � 10ÿ2 2.5733 0.8358 0.3404 0.0979 ÿ0.0111

eq1 � 10ÿ3 ÿ17.2183 4.2777 4.0837 3.0229 2.1663

M48 eu1 � 10ÿ4 ÿ9.0198 1.7802 2.2408 1.8930 1.2838

eT � 10ÿ4 ÿ6.7224 ÿ2.1410 2.7605 4.3322 4.4186

er11 � 10ÿ2 ÿ1.0043 ÿ0.3702 ÿ0.3467 ÿ0.2666 ÿ0.1570

eq1 � 10ÿ3 ÿ22.5067 4.1226 4.1855 3.1629 2.2540

M88 eu1 � 10ÿ4 0.5175 0.3765 0.2413 0.1522 0.0959

eT � 10ÿ4 4.0536 2.5455 1.5903 1.0012 0.6307

er11 � 10ÿ2 ÿ0.1572 ÿ0.1007 ÿ0.0633 ÿ0.0399 ÿ0.0251

eq1 � 10ÿ3 0.4266 0.4781 0.3107 0.1960 0.1234

C44 eu1 � 10ÿ4 ÿ33.2769 ÿ3.6450 ÿ0.1168 0.7988 1.0255

eT � 10ÿ4 ÿ25.5404 ÿ40.2045 ÿ19.1697 ÿ6.4363 ÿ0.4679

er11 � 10ÿ2 9.3075 4.3292 2.3224 1.2057 0.5988

eq1 � 10ÿ3 ÿ60.7727 0.5673 3.9702 3.7835 3.3234

C48 eu1 � 10ÿ4 ÿ30.7978 ÿ4.1552 ÿ0.8428 0.1569 0.5094

eT � 10ÿ4 ÿ38.6050 ÿ45.8564 ÿ24.2124 ÿ10.8205 ÿ3.9904

er11 � 10ÿ2 1.0937 1.1108 0.4360 0.0820 ÿ0.0694

eq1 � 10ÿ3 ÿ56.1140 0.4269 3.1755 3.0774 2.7556

C88 eu1 � 10ÿ4 ÿ6.7353 ÿ4.6951 ÿ2.9510 ÿ1.8491 ÿ1.1585

eT � 10ÿ4 ÿ54.6990 ÿ31.9930 ÿ20.0054 ÿ12.5338 ÿ7.8530

er11 � 10ÿ2 ÿ0.6125 0.4482 0.2755 0.1502 0.0689

eq1 � 10ÿ3 ÿ1.8594 ÿ9.6074 ÿ6.2408 ÿ3.9177 ÿ2.4556
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Table 2

Test 1 ± number of degrees of freedom of the semidiscrete system of equations

Number of degrees of

freedom

M44

6� 1

M48

6� 1

M88

6� 1

C44

6� 1

C48

6� 1

C88

6� 1

C48

12� 1

Displacement 28 66 66 28 66 66 126

Temperature 24 24 48 14 14 33 26

Total 52 90 114 42 80 99 152

Fig. 4. Sensitivity to geometric distortion, at s � 0:25: (a) error in displacement u1 in A and (b) temperature error in A.

Fig. 5. Sensitivity to geometric distortion, at s � 0:25: (a) error in normal stress r11 in B and (b) error in heat ¯ux q1 in B.
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heat ¯ux error eq2 in C. No tables have been included due to the clarity of the ®gures. As can be observed,
all the errors relative to mixed elements vary only slightly as the distortion parameter increases. On the
contrary, compatible elements are much more sensitive to element distortions.

6.2. Test 2

An elastic isotropic homogeneous square plate of side length L, density q, Young's modulus E, Poisson
ratio m � 0:3, thermal expansion coe�cient a, speci®c heat c, and thermal conductivity k is considered. The
plate is initially at the uniform reference temperature T0 and two adjacent sides (x1 � 0 and x2 � 0) are
restrained and insulated. At t � 0, the temperature on the other two adjacent sides (x1 � L and x2 � L) is
abruptly raised and maintained at the constant value T0 � DT . As in the previous test, the thermoelastic
coupling parameter of the material is 0:5. The problem is solved using a uniform 5� 5 element mesh and
the reference solution is carried out using a uniform mesh with 100 C88 elements per side. The local errors
in displacement, temperature, stress and heat ¯ux are measured in accordance with Eqs. (66) and (67).

The time histories of the displacement error eu1 in A and the temperature error eT in B are shown in Fig.
6, whereas the time histories of the stress error er22 and the heat ¯ux error eq2 in C are shown in Fig. 7. Table
3 gives some of the related numerical values. As in the previous test, the numerical response of element C48
obtained by halving the element size of the discretization has been included for a more comprehensive
comparison. An indication about the computational cost can be drawn from Table 4, which gives the
number of degrees of freedom for various ®nite element semidiscretizations.

The results qualitatively re¯ect those of the previous test and con®rm the good qualities of the mixed
model. In particular, the solutions provided by the mixed elements are in good agreement with the reference
solution over all the time range of interest. The relevant errors are much smaller than those of the com-
patible elements with equal number of nodes, especially in the short term. This con®rms the better accuracy
of the mixed elements in the higher modes of response, which are of importance in the initial transient.
Halving the element size, the accuracy of C48 increases but it is still poor in comparison with M48 and
M88, although its larger number of degrees of freedom. On the thermal side, also element M44 is com-
petitive with C48 for 10� 10 element mesh, being more accurate in predicting both temperature and heat

Fig. 6. Test 2 ± error time histories: (a) displacement u1 in A and (b) temperature in B.
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Fig. 7. Test 2 ± error time histories in C: (a) normal stress r22 and (b) heat ¯ux q2.

Table 3

Test 2 ÿ errors in displacement u1 in A, in temperature in B, and in normal stress r22 and heat ¯ux q2 in C (see Figs. 6 and 7)

Element Errors s � 0:1 s � 0:3 s � 0:5 s � 0:7 s � 0:9

M44 eu1 � 10ÿ3 0.2919 1.1710 1.7281 1.8343 1.9043

eT � 10ÿ3 ÿ9.3088 ÿ2.3783 ÿ0.4079 0.0386 0.1054

er22 � 10ÿ2 0.3462 ÿ2.8204 ÿ3.8948 ÿ4.2729 ÿ4.4914

eq2 � 10ÿ2 5.7521 1.0599 0.4671 0.2221 0.1048

M48 eu1 � 10ÿ3 1.8754 0.3040 0.0209 ÿ0.1589 ÿ0.2688

eT � 10ÿ3 ÿ10.0928 ÿ2.8230 ÿ0.4833 0.1000 0.1551

er22 � 10ÿ2 1.7141 0.0409 ÿ0.2751 ÿ0.4590 ÿ0.5664

eq2 � 10ÿ2 6.4608 1.0094 0.4775 0.2482 0.1252

M88 eu1 � 10ÿ3 ÿ0.1379 ÿ0.3468 ÿ0.3785 ÿ0.3889 ÿ0.3923

eT � 10ÿ3 ÿ0.3371 ÿ0.4943 ÿ0.2496 ÿ0.1189 ÿ0.0559

er22 � 10ÿ2 ÿ0.4853 ÿ0.5995 ÿ0.6513 ÿ0.6717 ÿ0.6794

eq2 � 10ÿ2 ÿ0.9290 ÿ0.2240 ÿ0.0954 ÿ0.0420 ÿ0.0185

C44 eu1 � 10ÿ3 12.4916 5.7186 3.5191 2.8145 2.2084

eT � 10ÿ3 7.2313 20.2367 11.2207 5.7158 2.8251

er22 � 10ÿ2 ÿ1.5645 ÿ3.9592 ÿ4.4048 ÿ4.7363 ÿ4.9492

eq2 � 10ÿ2 22.5337 4.9547 2.2500 1.0611 0.4960

C48 eu1 � 10ÿ3 11.2958 4.1125 2.0889 1.2416 0.8897

eT � 10ÿ3 7.1854 16.8633 8.9090 4.3852 2.1143

er22 � 10ÿ2 9.0387 1.9854 0.0766 ÿ0.8066 ÿ1.2252

eq2 � 10ÿ2 21.4100 4.5550 1.9954 0.9138 0.4170

C88 eu1 � 10ÿ3 1.0717 0.5791 0.4224 0.3514 0.3189

eT � 10ÿ3 3.3567 2.1342 0.9853 0.4470 0.2020

er22 � 10ÿ2 ÿ0.8335 ÿ1.2075 ÿ1.4187 ÿ1.5139 ÿ1.5565

eq2 � 10ÿ2 ÿ2.0821 ÿ0.3411 ÿ0.1872 ÿ0.1037 ÿ0.0530
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¯ux in spite of its smaller number of temperature degrees of freedom. Finally, as noticed in the previous
test, the error curves in temperature and heat ¯ux show that element M48 is slightly sti� in predicting the
thermal variables.

7. Concluding remarks

The method of analysis herein presented constitutes an alternative approach for linear, coupled ther-
moelastic analysis from both conceptual and applicative standpoints. The method is of mixed type, and for
this feature, it gives direct information on all the quantities involved in the thermoelastic problem. The
elastic part is of hybrid type, and the thermal part is based on the mixed ¯ux-temperature formulation.
Thermal equilibrium for ®eld heat sources is met a priori. Thermal balance and initial conditions are en-
forced weakly using temperature as a Lagrange multiplier, and the thermoelastic dissipation term is ex-
pressed via the constitutive equations in terms of stress and temperature rates. In the ®nite element model,
temperature within the element is represented independently of temperature on the element boundary. This
permits to improve the thermal response without a�ecting the consistency between stress and temperature
approximations.

A comprehensive guideline to a ®nite element implementation is presented. Three quadrilateral elements
are proposed and their qualities are shown through some test cases, drawing a comparison with the
standard approach based on displacement and temperature interpolations. In all the tests performed, the
mixed elements exhibit a good accuracy over all the time interval of interest, even though relatively coarse
meshes are used. Moreover, the mixed elements perform considerably better than the compatible ones with
equal number of nodes, especially in the short term response. Comparable overall accuracy can be obtained
with compatible ®nite elements by properly re®ning the semidiscretization, but a larger number of degrees
of freedom is required on the whole. Finally, the mixed model shows a reduced sensitivity to element ge-
ometry distortions. In the authors' experience, the better overall accuracy of the mixed model presented
generally o�sets the computation burden which is higher than the one required by the standard ®nite el-
ement approach based on displacements and temperature. Therefore, the mixed model appears to be re-
liable and e�ective for coupled thermoelastic analysis.
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Table 4

Test 2 ± number of degrees of freedom of the semidiscrete system of equations

Number of degrees

of freedom

M44

5� 5

M48

5� 5

M88

5� 5

C44

5� 5

C48

5� 5

C88

5� 5

C48

10� 10

Displacement 72 192 192 72 192 192 682

Temperature 100 100 200 36 36 96 121

Total 172 292 392 108 228 288 803
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Appendix A

Explicit form of statement (22):Z
I

X
e

Z
Be

dr � �(
ÿ Cÿ1r� symgraduÿ A�T ÿ T0�

�
dV ÿ

Z
oBue

drn � �uÿ �u�dS

�
Z

Be

du � divr� � p�dV �
Z

oBte

du � �rnÿ�t�dS

ÿ
Z

Be

dq � kÿ1q
ÿ � gradT

�
dV �

Z
oBTe

d~q�~T ÿ �T �dS �
Z

oBTe

d ~T �~qÿ q � n�dS

�
Z

Be

dT divq
�

ÿ c� T0CA � symgradu� �� � qc _T
�

dV ÿ
Z

oBqe

d ~T �q � nÿ �q�dS

ÿ
Z

oBce

d ~T q � n
h

ÿ j� ~T ÿ Tc�
i
dS �

Z
oBe

dq � n�T ÿ ~T �dS

)
dt

�
Z

I

X
j

Z
qj

dT �q � n��j
h(

� �q � n�ÿj
i
�
Z

qj

du � �rn��j
h

� �rn�ÿj
i)

dt

ÿ
X

e

Z
Be

dT j0qc�T j0 ÿ �T0�dV � 0 8�du; dr; dT ; dq; d ~T ; d~q�:

Appendix B

(I) The expressions of matrices and vectors in Eq. (47) are

Ŵ �
Z

Be

vqcNT
T NT dV ; K �

Z
Be

PT
h ANT dV ; W �

Z
Be

qcNT
T NT dV ;

Hb �
Z

Be

PT
h Cÿ1Ph dV ; Hw �

Z
Be

LT
wkÿ1Lw dV ; gw �

Z
Be

LT
wkÿ1qc dV ;

G~s �
Z

oBe

NT
~T nTLw dS; Gs � 0

Z
Be

NT
T divLt dV

���� ����; g~s �
Z

oBe

NT
~T nTqc dS;

Gv �
Z

oBe

NT
u NTPh dS; gb �

Z
Be

PT
h �Cÿ1rp ÿ T0A�dV ; gv �

Z
oBe

NT
u NTrp dS;

s0 �
Z

Be

qcNT
T

�T0 dV ; hv �
Z

oBe

NT
u tdS; h~s �

Z
oBe

NT
~T qdS;

where wT
ht � wT

h wT
t

�� ��, Lw � Lh Ltj j, and N is the matrix containing the direction cosines of the outward
normal to oBe. If a part of the element boundary lies on oBq, the equivalent thermal load vector is

hq
~s �

Z
oBe\oBq

NT
~T �qdS:

Moreover, if a part of the element boundary lies on oBc, the term due to convective heat exchange in Eq.
(43) reads asZ

oBe\oBc

1
2
j N ~T ~s
�

ÿ Tc

�2

dS;

and the resulting thermal load vector is obtained by di�erentiating the above term with respect to ~s:
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hc
~s � Kc~soBc ÿ �hc;

where vector ~soBc collects the components of ~s relative to oBc and

Kc � 1

2

Z
oBe\oBc

jNT
~T N ~T dS; �hc � 1

2

Z
oBe\oBc

jN ~T Tc dS:

(II) The expressions of matrices and vectors in Eq. (48) are

Kv � GvH
ÿ1
b GT

v ; Kvs � GvH
ÿ1
b K; pv � gv ÿGvH

ÿ1
b gb;

K~s � G~sH
ÿ1
w GT

~s ; K~ss � G~sH
ÿ1
w GT

s ; Ks � GsH
ÿ1
w GT

s

p~s � g~s �G~sH
ÿ1
w gw; ps � ÿGsH

ÿ1
w gw; Ms � Ŵÿ T0K

THÿ1
b K:

Appendix C

Element stress and ¯ux representations
Element M44

Ph �
1 0 0 �x2 0 �x1 0

0 1 0 0 �x1 0 �x2

0 0 1 0 0 ÿ�x2 ÿ�x1

�������
�������;

Lh � 1 0 0 �x2 �x1

0 1 �x1 0 ÿ�x2

���� ����;
Lt � �x1 �x2

1 0 2�x1�x2 �x2
2 3�x2

1�x2 �x3
2

�x2 0 �x2
2 �x2

1 2�x1�x2 �x3
1 3�x1�x2

2

�����
�����:

Element M48

Ph �
1 0 0 �x2 0 �x1 0 �x2

1 2�x1�x2 �x2
2 0 0 0 0 �x3

1 3�x2
1�x2 3�x1�x2

2 �x3
2

0 1 0 0 �x1 0 �x2 �x2
2 0 0 �x2

1 2�x1�x2 �x3
1 3�x2

1�x2 3�x1�x2
2 �x3

2 0 0

0 0 1 0 0 ÿ�x2 ÿ�x1 ÿ2�x1�x2 ÿ�x2
2 0 0 ÿ�x2

1 0 ÿ�x3
1 ÿ3�x2

1�x2 ÿ3�x1�x2
2 ÿ�x3

2 0

���������

���������;

Lh � 1 0 0 �x2 �x1

0 1 �x1 0 ÿ�x2

���� ����;
Lt �

�x1 �x2
1 0 2�x1�x2 �x2

2 3�x2
1�x2 �x3

2 �x3
1 0 �x1�x2

2 �x4
1 4�x3

1�x2 3�x2
1�x

2
2 2�x1�x3

2 �x4
2 0

�x2 0 �x2
2 �x2

1 2�x1�x2 �x3
1 3�x1�x2

2 0 �x3
2 �x2

1�x2 0 �x4
1 2�x3

1�x2 3�x2
1�x

2
2 4�x1�x3

2 �x4
2

�����
�����:

Element M88

Ph �
1 0 0 �x2 0 �x1 0 �x2

1 2�x1�x2 �x2
2 0 0 0 0 �x3

1 3�x2
1�x2 3�x1�x2

2 �x3
2

0 1 0 0 �x1 0 �x2 �x2
2 0 0 �x2

1 2�x1�x2 �x3
1 3�x2

1�x2 3�x1�x2
2 �x3

2 0 0

0 0 1 0 0 ÿ�x2 ÿ�x1 ÿ2�x1�x2 ÿ�x2
2 0 0 ÿ�x2

1 0 ÿ�x3
1 ÿ3�x2

1�x2 ÿ3�x1�x2
2 ÿ�x3

2 0

��������
��������;
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Lh � 1 0 0 �x2 �x1

0 1 �x1 0 ÿ�x2

���� ����;
Lt � �x1 �x2

1 0 2�x1�x2 �x2
2 3�x2

1�x2 �x3
2 �x3

1 0 �x1�x2
2 �x4

1 4�x3
1�x2 3�x2

1�x
2
2 2�x1�x3

2 �x4
2 0

�x2 0 �x2
2 �x2

1 2�x1�x2 �x3
1 3�x1�x2

2 0 �x3
2 �x2

1�x2 0 �x4
1 2�x3

1�x2 3�x2
1�x

2
2 4�x1�x3

2 �x4
2

�����
�����:
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